Suppr超能文献

一个新型脑肿瘤磁共振成像数据集(加齐脑影像2020):初步基准测试结果及综合分析

A novel brain tumor magnetic resonance imaging dataset (Gazi Brains 2020): initial benchmark results and comprehensive analysis.

作者信息

Sagiroglu Seref, Terzi Ramazan, Celtikci Emrah, Börcek Alp Özgün, Atay Yilmaz, Arslan Bilgehan, Sahin Mustafa Caglar, Nernekli Kerem, Demirezen Umut, Ozdemir Okan Bilge, Özdem Karaca Kevser, Azgınoğlu Nuh

机构信息

Computer Engineering, Gazi University, Ankara, Turkey.

Computer Engineering, Amasya University, Amasya, Turkey.

出版信息

PeerJ Comput Sci. 2025 Jun 10;11:e2920. doi: 10.7717/peerj-cs.2920. eCollection 2025.

Abstract

This article presents a new benchmark MRI dataset called the Gazi Brains Dataset 2020, containing MRI images of 100 patients, and introduces initial experimental results performed on this dataset in comparison with available brain MRI datasets. Furthermore, the dataset is analyzed using eight different deep learning models for high-grade glioma tumor prediction, classification, and detection tasks. Additionally, this study demonstrates the results of an explainable Artificial Intelligence (XAI) approach applied to the trained models. To demonstrate the utility of the proposed dataset, different deep learning models were applied to the problem, and these models were tested on various data and models applied for various tasks such as region of interest extraction, whole tumor segmentation, prediction, detection, and classification with accuracy, precision, recall, and F1-score. The experimental results indicate that the dataset is highly effective for multiple purposes, and the models reached significant results with successful F1-scores ranging between 93.2% and 96.4%. ROI and whole tumor segmentations were successfully performed and compared with seven algorithms with accuracies of 87.61% and 97.18%. The Grad-CAM model also demonstrated satisfactory accuracy across the tests that were conducted. Moreover, this study explores the application of XAI to the trained models, providing interpretability and insights into the decision-making processes. The findings signify that this dataset holds significant potential for various future research directions, including age estimation, gender detection, causal inference with XAI, and disease-related survival analysis.

摘要

本文介绍了一个名为2020年加济大脑数据集的新的基准MRI数据集,其中包含100名患者的MRI图像,并介绍了与现有脑MRI数据集相比在该数据集上进行的初步实验结果。此外,使用八种不同的深度学习模型对该数据集进行分析,以完成高级别胶质瘤肿瘤的预测、分类和检测任务。此外,本研究展示了将可解释人工智能(XAI)方法应用于训练模型的结果。为了证明所提出数据集的实用性,将不同的深度学习模型应用于该问题,并在各种数据和模型上对这些模型进行测试,这些数据和模型用于各种任务,如感兴趣区域提取、全肿瘤分割、预测、检测和分类,并计算其准确率、精确率、召回率和F1分数。实验结果表明,该数据集在多个方面都非常有效,模型取得了显著成果,F1分数成功达到93.2%至96.4%。成功进行了感兴趣区域和全肿瘤分割,并与七种算法进行了比较,准确率分别为87.61%和97.18%。Grad-CAM模型在进行的测试中也表现出令人满意的准确率。此外,本研究探索了将XAI应用于训练模型,为决策过程提供了可解释性和见解。研究结果表明,该数据集在包括年龄估计、性别检测、利用XAI进行因果推断以及疾病相关生存分析等各种未来研究方向上具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8690/12192951/c825cb9b145d/peerj-cs-11-2920-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验