Suppr超能文献

通过机器学习和分子模拟方法发现严重急性呼吸综合征冠状病毒2木瓜样蛋白酶抑制剂

Discovery of SARS-CoV-2 papain-like protease inhibitors through machine learning and molecular simulation approaches.

作者信息

Li Li, Li Jinyang, Zhang Quanling, Huang Yifei, Bao Yongxin, Tang Xiaowen

机构信息

School of Pharmacy, Qingdao University, Qingdao, Shandong, China.

College of Life Sciences, Qingdao University, Qingdao, Shandong, China.

出版信息

Drug Discov Ther. 2025 Jul 4;19(3):189-199. doi: 10.5582/ddt.2025.01034. Epub 2025 Jun 27.

Abstract

The papain-like protease (PLpro), a cysteine protease found in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), plays a crucial role in viral replication by cleaving the viral polyproteins and interfering with the host's innate immune response through deubiquitination and deISGylation activities. Consequently, targeting PLpro has emerged as an appealing therapeutic strategy against SARS-CoV-2 infection. Despite considerable efforts in the development of PLpro inhibitors, there is currently no drug available on the market that specifically targets PLpro. Improving drug screening strategies and identifying additional candidate compounds could significantly contribute to the advancement of antiviral agents targeting PLpro. To address this pressing issue, our present study has developed a highly efficient compound screening strategy based on a supervised machine learning approach. Integrated with further molecular simulation approaches such as molecular docking, molecular dynamics simulations, and quantum chemical calculations, we have identified seven compounds with potent inhibitory activity against PLpro. Notably, two of these compounds exhibited superior activity compared to Jun12682, which is currently considered the best-performing inhibitor against PLpro. Furthermore, some crucial residues in SARS-CoV-2 PLpro were recognized as favorable contributors to the binding with inhibitor, which would provide valuable insights for the development of more potent and highly selective SARS-CoV-2 PLpro inhibitors. The compound screening strategy and potential PLpro inhibitor candidates revealed in the present study would hold promise for advancing the development of antiviral drugs targeting SARS-CoV-2 and its variants.

摘要

木瓜蛋白酶样蛋白酶(PLpro)是在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)中发现的一种半胱氨酸蛋白酶,它通过切割病毒多聚蛋白并通过去泛素化和去ISGylation活性干扰宿主的先天免疫反应,在病毒复制中发挥关键作用。因此,靶向PLpro已成为一种针对SARS-CoV-2感染的有吸引力的治疗策略。尽管在开发PLpro抑制剂方面付出了巨大努力,但目前市场上尚无专门针对PLpro的药物。改进药物筛选策略并鉴定更多候选化合物可能会显著推动靶向PLpro的抗病毒药物的发展。为了解决这一紧迫问题,我们目前的研究基于监督机器学习方法开发了一种高效的化合物筛选策略。结合分子对接、分子动力学模拟和量子化学计算等进一步的分子模拟方法,我们鉴定出了七种对PLpro具有强效抑制活性的化合物。值得注意的是,其中两种化合物表现出比Jun12682更优异的活性,Jun12682目前被认为是针对PLpro表现最佳的抑制剂。此外,SARS-CoV-2 PLpro中的一些关键残基被认为是与抑制剂结合的有利因素,这将为开发更有效和高选择性的SARS-CoV-2 PLpro抑制剂提供有价值的见解。本研究中揭示的化合物筛选策略和潜在的PLpro抑制剂候选物有望推动针对SARS-CoV-2及其变体的抗病毒药物的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验