Nkune Nkune Williams, Moloudi Kave, George Blassan P, Abrahamse Heidi
Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg Johannesburg 2028 South Africa
RSC Adv. 2025 Jun 30;15(28):22267-22284. doi: 10.1039/d5ra03102h.
Fluorescence molecular imaging (FMI) is a powerful imaging technique used primarily in biomedical research and clinical applications to visualize molecular and cellular processes of tumors and other diseases. FMI involves the use of fluorescent molecules (fluorophores) that absorb light at one wavelength and emit it at a longer wavelength. These fluorophores can be attached to specific molecules and markers (such as proteins, nucleic acids, or small molecules) in a biological sample. FMI typically offers non-radioactive and safe, real-time and higher spatial resolution compared to positron emission tomography (PET) for superficial tumors. Additionally, sensitivity and specificity of FMI for superficial tumors in better than PET is some cases. However, FMI and the materials used in molecular imaging (MI) have revolutionized biomedical research, diagnostics, and therapeutic monitoring. In contrast, despite their significant contributions, several challenges remain to be solved to improve the effective application of fluorescence-based techniques. These challenges are related to poor tissue penetration depth, background autofluorescence, photobleaching of fluorophores, low signal-to-noise ratio in deep tissues and the necessity for biocompatible and photostable probes. Hence, ongoing improvements in probe development, imaging technologies and analytical methods are required to overcome current challenges. Future advancements in fluorescence materials and imaging techniques hold promise for making MI more accurate, efficient and applicable for clinical and research scenarios. This review gives an overview of recent advances in the materials used in MI and findings of FMI. Finally, limitations of FMI are highlighted and recommendations for future research directions are proposed.
荧光分子成像(FMI)是一种强大的成像技术,主要用于生物医学研究和临床应用,以可视化肿瘤和其他疾病的分子和细胞过程。FMI涉及使用荧光分子(荧光团),这些荧光团在一个波长吸收光并在更长波长发射光。这些荧光团可以附着在生物样品中的特定分子和标记物(如蛋白质、核酸或小分子)上。与正电子发射断层扫描(PET)相比,FMI对于浅表肿瘤通常提供非放射性且安全、实时且更高的空间分辨率。此外,在某些情况下,FMI对浅表肿瘤的敏感性和特异性优于PET。然而,FMI以及分子成像(MI)中使用的材料已经彻底改变了生物医学研究、诊断和治疗监测。相比之下,尽管它们做出了重大贡献,但仍有几个挑战有待解决,以提高基于荧光技术的有效应用。这些挑战与组织穿透深度差、背景自发荧光、荧光团的光漂白、深部组织中的低信噪比以及对生物相容性和光稳定探针的需求有关。因此,需要在探针开发、成像技术和分析方法方面不断改进,以克服当前的挑战。荧光材料和成像技术的未来进展有望使MI更准确、高效且适用于临床和研究场景。本综述概述了MI中使用的材料的最新进展以及FMI的研究结果。最后,强调了FMI的局限性,并提出了未来研究方向的建议。