Suppr超能文献

整合代谢组学、蛋白质组学和传统风险因素以预测睡眠障碍并阐明潜在的生物学途径。

Integrating metabolomics, proteomics, and traditional risk factors to predict sleep disorders and elucidate potential biological pathways.

作者信息

Zhang Ronghui, Luo Jia, Wang Tong, Wang Weijing, Sun Jing, Zhang Dongfeng

机构信息

Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China.

Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

J Affect Disord. 2025 Dec 1;390:119784. doi: 10.1016/j.jad.2025.119784. Epub 2025 Jun 30.

Abstract

BACKGROUND

Sleep disorders (SD) are common, heterogeneous conditions with significant health impacts. Traditional risk factors like age, sex, and BMI have limited predictive power. Integrating metabolomics and proteomics with these factors may enhance SD prediction and reveal underlying biological pathways.

METHODS

We utilized data from 26,569 UK Biobank participants (mean age: 57.3 years; 54.3 % male), a large UK cohort aged 40-69 at recruitment, with metabolomic and proteomic measurements obtained using NMR-based and Olink Explore platforms, respectively. Cox proportional hazards and LASSO-Cox regression were used to identify metabolite and protein biomarkers for SD risk and construct metabolite (MetaS) and protein (ProS) risk scores. These scores were combined with a traditional risk score (TraS) to develop a combined predictive model, which was evaluated for discrimination, calibration, net benefit, and risk stratification. Mediation analysis assessed the contributions of metabolites and proteins to the relationship between TraS and SD.

RESULTS

Over 13.3 years of follow-up, 658 participants developed SD. Eight metabolites and 34 proteins were identified as key biomarkers. The combined model (MetaS, ProS, and TraS) showed a C-index of 0.78 (95 % CI: 0.75-0.80) and good calibration. Risk stratification of combined score identified high-, medium-, and low-risk groups, with high-risk individuals having a 4.5-fold increased SD risk. Mediation analysis revealed significant contributions from MetaS (8.68 %) and ProS (25.98 %) with specific metabolites (e.g., LDL size) and proteins (e.g., RTN4R, FURIN) identified as top contributors.

CONCLUSIONS

This study demonstrates that integrating metabolomics and proteomics with traditional risk factors improve SD risk prediction offers preliminary biological insights.

摘要

背景

睡眠障碍(SD)是常见的异质性疾病,对健康有重大影响。年龄、性别和体重指数等传统风险因素的预测能力有限。将代谢组学和蛋白质组学与这些因素相结合,可能会增强睡眠障碍的预测能力,并揭示潜在的生物学途径。

方法

我们利用了来自英国生物银行26569名参与者的数据(平均年龄:57.3岁;54.3%为男性),这是一个在招募时年龄在40-69岁之间的大型英国队列,分别使用基于核磁共振的平台和Olink Explore平台获得了代谢组学和蛋白质组学测量数据。采用Cox比例风险模型和LASSO-Cox回归来识别睡眠障碍风险的代谢物和蛋白质生物标志物,并构建代谢物(MetaS)和蛋白质(ProS)风险评分。这些评分与传统风险评分(TraS)相结合,开发出一个联合预测模型,并对其进行判别、校准、净效益和风险分层评估。中介分析评估了代谢物和蛋白质对TraS与睡眠障碍之间关系的贡献。

结果

在超过13.3年的随访中,658名参与者出现了睡眠障碍。8种代谢物和34种蛋白质被确定为关键生物标志物。联合模型(MetaS、ProS和TraS)的C指数为0.78(95%CI:0.75-0.80),校准良好。联合评分的风险分层确定了高、中、低风险组,高风险个体的睡眠障碍风险增加了4.5倍。中介分析显示,MetaS(8.68%)和ProS(25.98%)有显著贡献,特定的代谢物(如低密度脂蛋白大小)和蛋白质(如RTN4R、弗林蛋白酶)被确定为主要贡献者。

结论

本研究表明,将代谢组学和蛋白质组学与传统风险因素相结合可改善睡眠障碍风险预测,并提供初步的生物学见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验