Panthier Frédéric, Smith Daron, Traxer Olivier, Castellani Daniele, Yuen Steffi, Somani Bhaskar, Gauhar Vineet
Department of Urology, Westmoreland Street Hospital, and Clinical Microbiology, UCLH NHS Foundation Trust, London, UK.
Service d'Urologie, Assistance-Publique Hôpitaux de Paris, Hôpital Tenon, Sorbonne Université, 75020, Paris, France.
World J Urol. 2025 Jul 6;43(1):412. doi: 10.1007/s00345-025-05798-9.
Suction devices such as flexible and navigable suction ureteral access sheath (FANS) are promising tools to reach the zero-fragment rate (ZFR) after flexible ureteroscopy (FURS) and laser lithotripsy. FANS could especially be useful for lower pole stones (LPS), avoiding postoperative retained stone dust. Using Machine Learning (ML) models, we aimed to predict the ZFR after FURS with FANS and secondarily the possible access to the lower pole (LP).
Data from patients who underwent FURS in 25 centers worldwide were prospectively collected (Aug 2023-Jan 2024). Exclusion criteria were abnormal renal anatomy and ureteral stones. ZFR and LP access were respectively defined as the total absence of residual fragments on computed tomography at 1-month follow-up and the ability to place the FANS into a LP calyx. After data normalization and splitting (training-test (80-20%)), Eight ML models were evaluated to predict separately ZFR and LPS, using binary classification.
A total of 390 patients were included with a median age of 49 (36-61)years. The median stone volume was 1440 (1006-2219)mm. 70,5% and 59% of patients were first time stone formers and pre-stented. The FANS could access the LP in 75,1% of cases. At 1-month, the ZFR was 56,7% (221/390). Above all ML models, ExtraTreesClassifier presented the highest accuracy (0,83), F1-score(0,85) and AUC (0,83) for ZFR prediction from preoperative data. The LP access was best predicted by the RandomForestClassifier (accuracy (0,86), F1-score (0,91) and AUC (0,76)).
Based on preoperative data and ML, we can accurately predict the ZFR and LP access during FURS with FANS. Our models could improve the elective indications for FANS utilization.
诸如柔性可导航输尿管吸引鞘(FANS)之类的吸引装置是有望实现输尿管软镜检查(FURS)和激光碎石术后零碎片率(ZFR)的工具。FANS对于下极结石(LPS)可能特别有用,可避免术后残留结石粉尘。我们旨在使用机器学习(ML)模型预测FURS联合FANS后的ZFR,其次预测进入下极(LP)的可能性。
前瞻性收集了全球25个中心接受FURS治疗的患者的数据(2023年8月至2024年1月)。排除标准为肾脏解剖结构异常和输尿管结石。ZFR和LP进入分别定义为1个月随访时计算机断层扫描上完全没有残留碎片以及将FANS放入LP肾盏的能力。在数据标准化和拆分(训练-测试(80-20%))后,使用二元分类评估了八个ML模型,分别预测ZFR和LPS。
共纳入390例患者,中位年龄为49(36-61)岁。中位结石体积为1440(1006-2219)mm。70.5%和59%的患者是首次结石形成者且预先放置了支架。FANS在75.1%的病例中能够进入LP。1个月时,ZFR为56.7%(221/390)。在所有ML模型中,ExtraTreesClassifier从术前数据预测ZFR时表现出最高的准确率(0.83)、F1分数(0.85)和AUC(0.83)。LP进入情况由RandomForestClassifier预测效果最佳(准确率(0.86)、F1分数(0.91)和AUC(0.76))。
基于术前数据和ML,我们可以准确预测FURS联合FANS时的ZFR和LP进入情况。我们的模型可以改善FANS使用的选择性指征。