Liu Fen, Ding Qihang, Jia Jia, Kang Qiang, Guo Jinlin, Liu Yu, Jiang Ting, Li Chao, Xiang Jingjing, Yang Xing, Qian Kun, Xiang Chunbai, Gong Ping, Yang Qinglai, Cheng Zhen
Department of Radiology, The Second Affiliated Hospital, University of South China, Heng-yang, Hunan 421001, China.
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Acta Biomater. 2025 Aug;202:476-488. doi: 10.1016/j.actbio.2025.07.012. Epub 2025 Jul 4.
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation (LPO), represents a compelling avenue for cancer therapy. Photodynamic therapy (PDT), which relies on the production of LPO-reactive oxygen species (ROS), has emerged as a potent therapeutic strategy. However, the clinical efficacy of conventional photosensitizers (PSs) is frequently constrained by tumor hypoxia, which intensifies local oxygen deficiency and diminishes PDT performance. In contrast, Type I PDT facilitates the generation of cytotoxic ROS, such as superoxide (O) through electron transfer mechanisms, offering enhanced oxygen independence and improved therapeutic efficacy. In this study, we introduce a near-infrared (NIR)- activated Type I PS, TPP-TPA, designed via a receptor-engineering strategy. TPP-TPA exhibits robust NIR absorption and NIR-II fluorescence emission, enabling efficient Type I ROS production that induces ferroptosis in 4T1 breast cancer cells. This work establishes a promising approach for cancer therapy and imaging, addressing key limitations of traditional PDT while offering significant potential for clinical translation. STATEMENT OF SIGNIFICANCE: This study presents a near-infrared (NIR)-activated Type I photosensitizer (PS), TPP-TPA, designed via a receptor-engineering strategy to overcome the limitations of conventional photodynamic therapy (PDT). By efficiently generating Type I reactive oxygen species (ROS) under NIR activation, TPP-TPA NPs induce ferroptosis in breast cancer cells, offering enhanced oxygen independence and improved therapeutic efficacy. This work advances cancer therapy and imaging by addressing the challenges of tumor hypoxia in PDT, highlighting its potential for clinical translation.
铁死亡是一种由脂质过氧化(LPO)驱动的铁依赖性调节性细胞死亡形式,是癌症治疗的一个有吸引力的途径。光动力疗法(PDT)依赖于产生LPO反应性氧物种(ROS),已成为一种有效的治疗策略。然而,传统光敏剂(PSs)的临床疗效常常受到肿瘤缺氧的限制,肿瘤缺氧会加剧局部氧缺乏并降低PDT性能。相比之下,I型PDT通过电子转移机制促进细胞毒性ROS的产生,如超氧化物(O),具有更高的氧独立性和更好的治疗效果。在本研究中,我们通过受体工程策略设计了一种近红外(NIR)激活的I型PS,即TPP-TPA。TPP-TPA表现出强大的近红外吸收和近红外二区荧光发射,能够高效产生I型ROS,从而在4T1乳腺癌细胞中诱导铁死亡。这项工作为癌症治疗和成像建立了一种有前景的方法,解决了传统PDT的关键局限性,同时具有显著的临床转化潜力。重要性声明:本研究提出了一种通过受体工程策略设计的近红外(NIR)激活的I型光敏剂(PS),即TPP-TPA,以克服传统光动力疗法(PDT)的局限性。通过在近红外激活下高效产生活性氧物种(ROS),TPP-TPA纳米颗粒在乳腺癌细胞中诱导铁死亡,具有更高的氧独立性和更好的治疗效果。这项工作通过解决PDT中肿瘤缺氧的挑战推动了癌症治疗和成像,突出了其临床转化的潜力。