Yang Huan, Wan Yangyang, Yang Shaokang, Zhou Xuecheng, Gao Shuai, Rao Dewei, Shi Weidong
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, P. R. China.
Jiangsu Provincial Key Laboratory of Ecological-Environmental Materials, Yancheng Institute of Technology, Yancheng, 224051, P. R. China.
Small. 2025 Jul 7:e2505719. doi: 10.1002/smll.202505719.
Spinel oxides have emerged as promising electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) owing to their flexible structure and intrinsic catalytic activity. However, developing high-performance bifunctional spinel oxide electrocatalysts and elucidating the underlying mechanisms for enhanced activity remain significant challenges. Herein, a highly efficient electrocatalyst, N-CoO-SO, featuring N doping and in situ surface sulfate (SO ) modification on a spinel oxide structure is developed. The synthesized N-CoO-SO exhibits an ultrathin nanosheet morphology with abundant micropores and mesopores, offering ample active sites and efficient mass transport. Theoretical simulations reveal that SO can form a moderate hydrogen bond interaction between sulfate and oxygen-containing intermediates, thereby combing with N doping for synergistically enhancing the electronic conductivity and reducing the energy barriers for protonation/deprotonation of intermediates. As a result, N-CoO-SO demonstrates a remarkably low potential difference (ΔE = 0.66 V) between the OER potential at 10 mA cm⁻ and the ORR half-wave potential, outperforming the benchmark RuO + Pt/C (0.71 V). Furthermore, rechargeable liquid and flexible solid-state Zn-air batteries employing N-CoO-SO as the air electrode catalyst achieve higher peak power density and superior stability compared to RuO + Pt/C catalyst.
由于其结构的灵活性和内在催化活性,尖晶石氧化物已成为用于析氧反应(OER)和氧还原反应(ORR)的有前景的电催化剂。然而,开发高性能双功能尖晶石氧化物电催化剂并阐明活性增强的潜在机制仍然是重大挑战。在此,开发了一种高效电催化剂N-CoO-SO,其在尖晶石氧化物结构上具有N掺杂和原位表面硫酸盐(SO )修饰。合成的N-CoO-SO呈现出具有丰富微孔和介孔的超薄纳米片形态,提供了充足的活性位点和高效的质量传输。理论模拟表明,SO 可以在硫酸盐和含氧化合物中间体之间形成适度的氢键相互作用,从而与N掺杂相结合,协同提高电子导电性并降低中间体质子化/去质子化的能垒。结果,N-CoO-SO在10 mA cm⁻的OER电位和ORR半波电位之间表现出极低的电位差(ΔE = 0.66 V),优于基准RuO + Pt/C(0.71 V)。此外,与RuO + Pt/C催化剂相比,采用N-CoO-SO作为空气电极催化剂的可充电液体和柔性固态锌空气电池实现了更高的峰值功率密度和卓越的稳定性。