Michalak Maciej, Szymczyk Jakub, Pawska Aleksandra, Wysocki Marcin, Janiak Dominika, Ziental Daniel, Ptaszek Marcin, Güzel Emre, Sobotta Lukasz
Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland.
Molecules. 2025 Jun 30;30(13):2810. doi: 10.3390/molecules30132810.
Photodynamic therapy (PDT) is a non-invasive therapeutic method with over a century of medical use, especially in dermatology, ophthalmology, dentistry, and, notably, cancer treatment. With an increasing number of clinical trials, there is growing demand for innovation in PDT. Despite being a promising treatment for cancer and bacterial infections, PDT faces limitations such as poor water solubility of many photosensitizers (PS), limited light penetration, off-target accumulation, and tumor hypoxia. This review focuses on chlorins-well-established macrocyclic PSs known for their strong activity and clinical relevance. We discuss how nanotechnology addresses PDT's limitations and enhances therapeutic outcomes. Nanocarriers like lipid-based (liposomes, micelles), polymer-based (cellulose, chitosan, silk fibroin, polyethyleneimine, PLGA), and carbon-based ones (graphene oxide, quantum dots, MOFs), and nanospheres are promising platforms that improve chlorin performance and reduce side effects. This review also explores their use in Antimicrobial Photodynamic Therapy (aPDT) against multidrug-resistant bacteria and in oncology. Recent in vivo studies demonstrate encouraging results in preclinical models using nanocarrier-enhanced chlorins, though clinical application remains limited.
光动力疗法(PDT)是一种具有一个多世纪医学应用历史的非侵入性治疗方法,尤其在皮肤科、眼科、牙科,以及显著地在癌症治疗领域。随着临床试验数量的增加,对光动力疗法创新的需求也在不断增长。尽管光动力疗法是一种有前景的癌症和细菌感染治疗方法,但它面临着诸多限制,例如许多光敏剂(PS)的水溶性差、光穿透有限、非靶向积累以及肿瘤缺氧。本综述聚焦于二氢卟吩——一类成熟的大环光敏剂,以其强大的活性和临床相关性而闻名。我们讨论了纳米技术如何解决光动力疗法的局限性并提高治疗效果。脂质基(脂质体、胶束)、聚合物基(纤维素、壳聚糖、丝素蛋白、聚乙烯亚胺、聚乳酸 - 羟基乙酸共聚物)和碳基(氧化石墨烯、量子点、金属有机框架)等纳米载体以及纳米球是有前景的平台,它们可以改善二氢卟吩的性能并减少副作用。本综述还探讨了它们在抗多药耐药细菌的抗菌光动力疗法(aPDT)和肿瘤学中的应用。最近的体内研究表明,在使用纳米载体增强的二氢卟吩的临床前模型中取得了令人鼓舞的结果,不过临床应用仍然有限。