Suppr超能文献

一项关于各国患者及公众对健康监测技术态度的系统评价。

A systematic review on patient and public attitudes toward health monitoring technologies across countries.

作者信息

Chen Tiantian, Hertog Ekaterina, Mahdi Adam, Vanderslott Samantha

机构信息

Global Health 50/50, Cambridge, UK.

Oxford Internet Institute, University of Oxford, Oxford, UK.

出版信息

NPJ Digit Med. 2025 Jul 12;8(1):433. doi: 10.1038/s41746-025-01762-4.

Abstract

The market for digital health monitoring is expanding rapidly, with technologies that track health information and provide access to medical data promising benefits for users, particularly in areas with limited healthcare resources. To understand user attitudes toward these technologies, we conducted a systematic review of literature with primary data about patient and public perspectives. We synthesized 562 studies (2000-2023) from PubMed, Embase, ACM Digital Library, IEEE Xplore, Web of Science, and Scopus, including qualitative, quantitative, and mixed-methods research. We revealed a significant geographic bias, with most research concentrated in few countries, and identified access gaps in both Global South and Global North. While users generally showed positive attitudes toward health monitoring technologies, they expressed various concerns. We provide suggestions for future research to enhance the socially responsible integration of technology in healthcare. One important limitation of our approach is using English-language search terms. This potentially excluded relevant studies from underrepresented countries.

摘要

数字健康监测市场正在迅速扩张,追踪健康信息并提供医疗数据访问权限的技术有望为用户带来益处,尤其是在医疗资源有限的地区。为了解用户对这些技术的态度,我们对有关患者和公众观点的原始数据文献进行了系统综述。我们综合了来自PubMed、Embase、ACM数字图书馆、IEEE Xplore、科学网和Scopus的562项研究(2000 - 2023年),包括定性、定量和混合方法研究。我们发现了显著的地理偏差,大多数研究集中在少数几个国家,并确定了全球南方和全球北方都存在获取差距。虽然用户总体上对健康监测技术持积极态度,但他们也表达了各种担忧。我们为未来研究提供了建议,以加强技术在医疗保健中的社会责任整合。我们方法的一个重要局限性是使用了英语搜索词。这可能排除了来自代表性不足国家的相关研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ac/12255672/771fa7075f57/41746_2025_1762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验