Suppr超能文献

社区老年人衰弱风险预测模型(PRE-FRA)的开发与验证

Development and validation of PRE-FRA (PREdiction of FRAilty risk in community older adults) frailty prediction model.

作者信息

Lin Taiping, Huang Xiaotao, Wang Xiang, Dai Miao, Yue Jirong

机构信息

Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Department of Gastroenterology, Jiangyou Hospital, Mianyang, Sichuan, China.

出版信息

Front Public Health. 2025 Jun 27;13:1593668. doi: 10.3389/fpubh.2025.1593668. eCollection 2025.

Abstract

BACKGROUND

As the global population ages, identifying older adults at risk of frailty becomes increasingly important for targeted interventions. This study aimed to develop and validate a 1-year frailty onset prediction model for initially non-frailty or pre-frailty, community-dwelling older adults.

METHODS

We enrolled 1,079 community-dwelling older adults aged >60 years without baseline frailty (i.e., non-frailty or pre-frailty) for the development cohort. Lasso regression was used to screen potential predictors. Subsequently, logistic regression analysis was conducted to create a nomogram, which was internally validated using 500 bootstrap resamples. Additionally, temporal validation was performed to ensure the model's generalizability. This validation involved an external cohort of 481 older adults, all aged over 60 years and without frailty at baseline. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC), and calibration was evaluated with calibration plots.

RESULTS

In the development cohort, we enrolled 1,079 older adults with a median age of 68.00 years (interquartile range: 64.00-72.00), including 673 females. Over a 1-year follow-up, 73 cases of frailty were identified. Key predictors identified by the model included age, history of falls within the past month, coughing while drinking water, pre-frailtyty status, cognitive impairment, 5-time chair stand test, and calf circumference. The developed model exhibited favorable discriminative ability in the development cohort (AUROC = 0.81, 95% confidence interval 0.76-0.87). Internal validation through bootstrapping yielded consistent results (AUROC = 0.80), while temporal validation confirmed its robustness (AUROC = 0.73). Calibration plots demonstrated favorable agreement in both the development and temporal validation cohorts. To enhance usability, an online web-based calculator was developed (accessible at: https://frailtyriskprediction.shinyapps.io/dynnomapp/). The model showed high sensitivity (0.92) for frailty exclusion at a 2.5% threshold and specificity (0.89) for frailty identification at a 15% threshold.

CONCLUSION

This 1-year frailty onset prediction model for initially non-frailty or pre-frailty older adults integrates accessible variables and demonstrates robust validation. It aids clinical decision-making by identifying high-risk individuals for early intervention.

摘要

背景

随着全球人口老龄化,识别有衰弱风险的老年人对于有针对性的干预措施变得越来越重要。本研究旨在为最初无衰弱或处于衰弱前期的社区居住老年人开发并验证一个1年衰弱发病预测模型。

方法

我们纳入了1079名年龄>60岁、无基线衰弱(即非衰弱或衰弱前期)的社区居住老年人作为开发队列。使用套索回归筛选潜在预测因素。随后,进行逻辑回归分析以创建列线图,并使用500次自抽样重采样进行内部验证。此外,进行时间验证以确保模型的可推广性。该验证涉及一个由481名老年人组成的外部队列,所有老年人年龄均超过60岁且基线时无衰弱。使用受试者工作特征曲线下面积(AUROC)评估辨别力,并使用校准图评估校准情况。

结果

在开发队列中,我们纳入了1079名老年人,中位年龄为68.00岁(四分位间距:64.00 - 72.00),其中包括673名女性。在1年的随访中,识别出73例衰弱病例。该模型识别出的关键预测因素包括年龄、过去一个月内的跌倒史、饮水时咳嗽、衰弱前期状态、认知障碍、5次起坐试验以及小腿围。所开发的模型在开发队列中表现出良好的辨别能力(AUROC = 0.81,95%置信区间0.76 - 0.87)。通过自抽样进行的内部验证产生了一致的结果(AUROC = 0.80),而时间验证证实了其稳健性(AUROC = 0.73)。校准图在开发队列和时间验证队列中均显示出良好的一致性。为提高可用性,开发了一个基于网络的在线计算器(可通过以下网址访问:https://frailtyriskprediction.shinyapps.io/dynnomapp/)。该模型在2.5%阈值下对排除衰弱的敏感性为0.92,在15%阈值下对识别衰弱的特异性为0.89。

结论

这个针对最初无衰弱或处于衰弱前期老年人的1年衰弱发病预测模型整合了易于获取的变量,并展示了稳健的验证。它通过识别高危个体进行早期干预,有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af21/12245915/e007b7e81615/fpubh-13-1593668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验