Suppr超能文献

通过机器学习和外部验证识别炎症性肠病的10种微生物特征

Identification of a 10-species microbial signature of inflammatory bowel disease by machine learning and external validation.

作者信息

Yu Shicheng, Li Jun, Ye Zhaofeng, Zhang Mengxian, Guo Xiaohua, Wang Xu, Liu Liansheng, Wang Yalong, Zhou Xin, Fu Wei, Zhang Michael Q, Chen Ye-Guang

机构信息

Guangzhou National Laboratory, Guangzhou, 510005, China.

Peking University Third Hospital, Haidian District, Beijing, 100191, China.

出版信息

Cell Regen. 2025 Jul 14;14(1):32. doi: 10.1186/s13619-025-00246-w.

Abstract

Genetic and microbial factors influence inflammatory bowel disease (IBD), prompting our study on non-invasive biomarkers for enhanced diagnostic precision. Using the XGBoost algorithm and variable analysis and the published metadata, we developed the 10-species signature XGBoost classification model (XGB-IBD10). By using distinct species signatures and prior machine and deep learning models and employing standardization methods to ensure comparability between metagenomic and 16S sequencing data, we constructed classification models to assess the XGB-IBD10 precision and effectiveness. XGB-IBD10 achieved a notable accuracy of 0.8722 in testing samples. In addition, we generated metagenomic sequencing data from collected 181 stool samples to validate our findings, and the model reached an accuracy of 0.8066. The model's performance significantly improved when trained on high-quality data from the Chinese population. Furthermore, the microbiome-based model showed promise in predicting active IBD. Overall, this study identifies promising non-invasive biomarkers associated with IBD, which could greatly enhance diagnostic accuracy.

摘要

遗传和微生物因素会影响炎症性肠病(IBD),这促使我们开展关于非侵入性生物标志物的研究,以提高诊断精度。利用XGBoost算法和变量分析以及已发表的元数据,我们开发了10种物种特征的XGBoost分类模型(XGB - IBD10)。通过使用不同的物种特征以及先前的机器学习和深度学习模型,并采用标准化方法来确保宏基因组学和16S测序数据之间的可比性,我们构建了分类模型来评估XGB - IBD10的精度和有效性。XGB - IBD10在测试样本中达到了0.8722的显著准确率。此外,我们从收集的181份粪便样本中生成了宏基因组测序数据以验证我们的发现,该模型的准确率达到了0.8066。当使用来自中国人群的高质量数据进行训练时,该模型的性能显著提高。此外,基于微生物组的模型在预测活动性IBD方面显示出前景。总体而言,本研究确定了与IBD相关的有前景的非侵入性生物标志物,这可大大提高诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验