Suppr超能文献

高骨肿瘤负荷患者进展为去势抵抗性前列腺癌的预测模型的开发。

Development of a predictive model for progression to castration-resistant prostate cancer in patients with high bone tumor burden.

作者信息

Chen Weichih, Li Jinjie, A Garu, Huang Shuai, Tang Yubo, Dong Yong, Linghu Xitao, Zhang Hang, Wang Bin, Guo Peiyi, Pan Jiangang

机构信息

Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University Guangzhou 510260, Guangdong, China.

Department of Orthopedic Surgery, The First People's Hospital of Foshan Foshan 528000, Guangdong, China.

出版信息

Am J Cancer Res. 2025 Jun 15;15(6):2719-2732. doi: 10.62347/YTSO4314. eCollection 2025.

Abstract

OBJECTIVE

To identify key risk factors and construct a predictive model for the progression of high bone tumor burden prostate cancer (HBTB-PCa) to castration-resistant prostate cancer (CRPC).

METHODS

This retrospective study included 367 HBTB-PCa patients treated between January 2018 and May 2021, with 286 cases progressed to CRPC (progression group) and 81 cases did not (non-progression group). Patients were randomly divided into training (n=257) and validation (n=110) sets at a 7:3 ratio. Logistic regression was used to identify independent risk factors, and a Nomogram was built to predict progression risk. Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA).

RESULTS

Compared with the non-progression group, patients in the progression group had significantly higher rates of perineural invasion (P=0.011), Gleason score ≥8 (P=0.002), and T4 stage (P=0.012). Laboratory markers including ALP (P<0.001) and LDH (P<0.001) were also elevated in the progression group. Multivariate analysis identified perineural invasion (P=0.032), Gleason score (P=0.002), initial PSA (P=0.025), ALP (P=0.011), LDH (P<0.001), and ALB (P=0.019) as independent predictors of progression to CRPC. The Nomogram demonstrated strong discrimination power (AUC=0.845 in the training set; AUC=0.746 in external validation), with LDH being the most influential predictor. DCA indicated a net clinical benefit up to 77.82%.

CONCLUSIONS

Perineural invasion, Gleason score ≥8, and elevated ALP and LDH are closely associated with progression from HBTB-PCa to CRPC. The constructed Nomogram (internal AUC=0.845; external AUC=0.746) offers a practical tool for individualized risk assessment and guiding treatment planning in clinical settings.

摘要

目的

确定高骨肿瘤负荷前列腺癌(HBTB-PCa)进展为去势抵抗性前列腺癌(CRPC)的关键风险因素并构建预测模型。

方法

这项回顾性研究纳入了2018年1月至2021年5月期间接受治疗的367例HBTB-PCa患者,其中286例进展为CRPC(进展组),81例未进展(非进展组)。患者按7:3的比例随机分为训练集(n = 257)和验证集(n = 110)。采用逻辑回归确定独立风险因素,并构建列线图以预测进展风险。使用受试者工作特征(ROC)曲线、校准图和决策曲线分析(DCA)评估模型性能。

结果

与非进展组相比,进展组患者的神经周围侵犯率(P = 0.011)、Gleason评分≥8(P = 0.002)和T4期(P = 0.012)显著更高。进展组中包括碱性磷酸酶(ALP,P < 0.001)和乳酸脱氢酶(LDH,P < 0.001)在内的实验室指标也升高。多因素分析确定神经周围侵犯(P = 0.032)、Gleason评分(P = 0.002)、初始前列腺特异性抗原(PSA,P = 0.025)、ALP(P = 0.011)、LDH(P < 0.001)和白蛋白(ALB,P = 0.019)是进展为CRPC的独立预测因素。列线图显示出强大的区分能力(训练集中AUC = 0.845;外部验证中AUC = 0.746),其中LDH是最具影响力的预测因素。DCA表明净临床获益高达77.82%。

结论

神经周围侵犯、Gleason评分≥8以及ALP和LDH升高与HBTB-PCa进展为CRPC密切相关。构建的列线图(内部AUC = 0.845;外部AUC = 0.746)为临床环境中的个体化风险评估和指导治疗计划提供了一种实用工具。

相似文献

1
Development of a predictive model for progression to castration-resistant prostate cancer in patients with high bone tumor burden.
Am J Cancer Res. 2025 Jun 15;15(6):2719-2732. doi: 10.62347/YTSO4314. eCollection 2025.
2
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
5
Construct a nomogram prediction and evaluation of influencing factors of adverse pregnancy outcomes in GDM patients based on plasma miR-144-3p levels.
Front Endocrinol (Lausanne). 2025 Jun 23;16:1548780. doi: 10.3389/fendo.2025.1548780. eCollection 2025.
8
A novel nomogram for predicting osteoporosis with low back pain among the patients in Wenshan Zhuang and Miao Autonomous Prefecture of China.
Front Endocrinol (Lausanne). 2025 Jun 5;16:1535163. doi: 10.3389/fendo.2025.1535163. eCollection 2025.
10
Development and external validation of a prediction model for brain metastases in patients with metastatic breast cancer.
J Cancer Res Clin Oncol. 2023 Oct;149(13):12333-12353. doi: 10.1007/s00432-023-05125-y. Epub 2023 Jul 11.

本文引用的文献

1
A pathology foundation model for cancer diagnosis and prognosis prediction.
Nature. 2024 Oct;634(8035):970-978. doi: 10.1038/s41586-024-07894-z. Epub 2024 Sep 4.
2
Identifying High Gleason Score Prostate Cancer by Prostate Fluid Metabolic Fingerprint-Based Multi-Modal Recognition.
Small Methods. 2024 Oct;8(10):e2301684. doi: 10.1002/smtd.202301684. Epub 2024 Jan 23.
3
Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis.
Biochim Biophys Acta Rev Cancer. 2024 Jan;1879(1):189033. doi: 10.1016/j.bbcan.2023.189033. Epub 2023 Nov 29.
4
Decision Making in Prostate Cancer.
N Engl J Med. 2023 Oct 5;389(14):1335-1338. doi: 10.1056/NEJMclde2307619.
5
Impact of Asian Race on Prognosis in De Novo Metastatic Prostate Cancer.
J Natl Compr Canc Netw. 2023 Jul;21(7):733-741.e3. doi: 10.6004/jnccn.2023.7027.
6
Early Treatment Intensification in Metastatic Hormone-Sensitive Prostate Cancer.
J Clin Oncol. 2023 Jul 10;41(20):3584-3590. doi: 10.1200/JCO.23.00723. Epub 2023 Jun 2.
8
Myeloid-like tumor hybrid cells in bone marrow promote progression of prostate cancer bone metastasis.
J Hematol Oncol. 2023 May 3;16(1):46. doi: 10.1186/s13045-023-01442-4.
9
Waiting on Prostate Cancer.
N Engl J Med. 2023 Apr 20;388(16):e54. doi: 10.1056/NEJMp2303613.
10
Screening for Prostate Cancer.
N Engl J Med. 2023 Apr 13;388(15):1405-1414. doi: 10.1056/NEJMcp2209151.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验