Suppr超能文献

利用大鼠肾脏基因共表达网络增强安全性评估生物标志物的识别及向人类的转化。

Utilizing rat kidney gene co-expression networks to enhance safety assessment biomarker identification and human translation.

作者信息

Kunnen Steven J, Callegaro Giulia, Sutherland Jeffrey J, Trairatphisan Panuwat, van Kessel Hugo W, Wijaya Lukas S, Chung Git, Pye Keith, Goldstein Keith M, Teague Claire R, Fisher Ciaran P, Saez-Rodriguez Julio, Brown Colin, Elmore Susan A, Heinz-Taheny Kathleen M, Stevens James L, van de Water Bob

机构信息

Leiden University, Leiden Academic Centre for Drug Research (LACDR), Division of Cell Systems and Drug Safety, Leiden, the Netherlands.

Vesalius Therapeutics, Cambridge, MA, USA.

出版信息

iScience. 2025 Jun 21;28(7):112978. doi: 10.1016/j.isci.2025.112978. eCollection 2025 Jul 18.

Abstract

Toxicogenomic data provide key insights into molecular mechanisms underlying drug-induced organ toxicities. To simplify transcriptomic data interpretation, we applied weighted gene co-expression network analysis (WGCNA) to rat kidney transcriptomics data from TG-GATEs (TG) and DrugMatrix (DM), covering time- and dose-response data for 180 compounds. A total of 347 gene modules were incorporated into the rat kidney TXG-MAPr web-tool, that interactively visualizes and quantifies module activity using eigengene scores (EGSs). Several modules annotated for cellular stress, injury, and inflammation were associated with renal pathologies and included established and candidate biomarker genes. Many rat kidney modules were preserved across transcriptome datasets, suggesting potential applicability to other kidney injury contexts. Cross-species preservation analysis using human kidney data further supported the translational potential of these rat-derived modules. The TXG-MAPr platform facilitates upload and analysis of gene expression data in the context of rat kidney co-expression networks, which could identify mechanisms and safety liabilities of chemical or drug exposures.

摘要

毒理基因组学数据为药物诱导的器官毒性潜在分子机制提供了关键见解。为简化转录组数据解读,我们将加权基因共表达网络分析(WGCNA)应用于来自TG-GATEs(TG)和DrugMatrix(DM)的大鼠肾脏转录组数据,涵盖180种化合物的时间和剂量反应数据。总共347个基因模块被纳入大鼠肾脏TXG-MAPr网络工具,该工具使用特征基因分数(EGS)交互式地可视化和量化模块活性。几个注释为细胞应激、损伤和炎症的模块与肾脏病理相关,包括已确立的和候选生物标志物基因。许多大鼠肾脏模块在转录组数据集中得以保留,表明其在其他肾损伤背景下具有潜在适用性。使用人类肾脏数据进行的跨物种保留分析进一步支持了这些源自大鼠的模块的转化潜力。TXG-MAPr平台有助于在大鼠肾脏共表达网络背景下上传和分析基因表达数据,这可以识别化学物质或药物暴露的机制和安全性问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验