Akkour Khalid, Masood Afshan, Al Mogren Maha, AlMalki Reem H, Alfadda Assim A, Joy Salini Scaria, Bassi Ali, Alhalal Hani, Arafah Maria, Othman Othman Mahmoud, Awwad Hadeel Mohammad, Rahman Anas M Abdel, Benabdelkamel Hicham
Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
Metabolites. 2025 Jul 5;15(7):458. doi: 10.3390/metabo15070458.
: Endometrial cancer (EC) is the sixth most common cancer among women globally, with an estimated 420,000 new cases diagnosed annually. : This study comprised patients with endometrial cancer (EC) (n = 17), hyperplasia (HY) (n = 17), and controls (CO) (n = 20). Tissue was collected from the endometrium of all 54 patients, including patients with HY, EC, and CO, who underwent total hysterectomy. EC and HY diagnoses were confirmed based on histological examination. Untargeted metabolomics profiling was conducted using LC-HRMS. The partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models were used for univariate and multivariate statistical analysis. The fitness of the model (R2Y) and predictive ability (Q2) were used to create OPLS-DA models. ROC analysis was carried out, followed by network analysis using Ingenuity Pathway Analysis. : The top metabolites that can discriminate EC and HY from CO were identified. This revealed a decrease in the levels of the lipid species, specifically phosphatidic acid (PA) (PA (14:1/14:0), PA(10:0/17:0), PA(18:1-O(12,13)/12:0)), PG(a-13:0/a-13:0), ganglioside GA1 (d18:1/18:1), PS(14:1/14:0), TG(20:0/18:4/14:1), and CDP-DG(PGF2alpha/18:2), while the levels of 3-Dehydro-L-gulonate, Uridine diphosphate-N-acetylglucosamine, ganglioside GT2 (d18:1/14:0), gamma-glutamyl glutamic acid and oxidized glutathione were increased in cases of EC and HY as compared to CO. Bioinformatics analysis, specifically using Ingenuity Pathway Analysis (IPA), revealed distinct pathway enrichments for EC and HY. For EC, the most highly scored pathways were associated with cell-to-cell signaling and interaction, skeletal and muscular system development and function, and small-molecule biochemistry. In contrast, HY cases showed the highest scoring pathways related to inflammatory disease, inflammatory response, and organismal injury and abnormalities. : Developing sensitive biomarkers could improve diagnosis and guide treatment decisions, particularly in identifying which patients with HY may safely avoid hysterectomy and be managed with hormonal therapy.
子宫内膜癌(EC)是全球女性中第六大常见癌症,估计每年有42万新发病例。本研究纳入了子宫内膜癌(EC)患者(n = 17)、子宫内膜增生(HY)患者(n = 17)和对照组(CO)患者(n = 20)。从所有54例接受全子宫切除术的患者(包括HY、EC和CO患者)的子宫内膜中采集组织。EC和HY的诊断通过组织学检查得以证实。使用液相色谱-高分辨质谱法进行非靶向代谢组学分析。偏最小二乘判别分析(PLS-DA)和正交偏最小二乘判别分析(OPLS-DA)模型用于单变量和多变量统计分析。利用模型的拟合优度(R2Y)和预测能力(Q2)创建OPLS-DA模型。进行ROC分析,随后使用Ingenuity Pathway Analysis进行网络分析。确定了能够区分EC和HY与CO的主要代谢物。结果显示,脂质种类水平降低,特别是磷脂酸(PA)(PA(14:1/14:0)、PA(10:0/17:0)、PA(18:1 - O(12,13)/12:0))、磷脂酰甘油(PG(a - 13:0/a - 13:0))、神经节苷脂GA1(d18:1/18:1)、磷脂酰丝氨酸(PS(14:1/14:0))、甘油三酯(TG(20:0/18:4/14:1))和CDP - DG(PGF2alpha/18:2),而与CO相比,EC和HY患者中3 - 脱氢 - L - 古洛糖酸、尿苷二磷酸 - N - 乙酰葡糖胺、神经节苷脂GT2(d18:1/14:0)、γ - 谷氨酰谷氨酸和氧化型谷胱甘肽水平升高。生物信息学分析,特别是使用Ingenuity Pathway Analysis(IPA),揭示了EC和HY不同的通路富集情况。对于EC,得分最高的通路与细胞间信号传导和相互作用、骨骼和肌肉系统发育与功能以及小分子生物化学相关。相比之下,HY病例得分最高的通路与炎症性疾病、炎症反应以及机体损伤和异常有关。开发敏感的生物标志物可以改善诊断并指导治疗决策,特别是在确定哪些HY患者可以安全避免子宫切除术并采用激素治疗方面。