Suppr超能文献

免疫进展机器学习(ImmuProgML):基于机器学习剖析肿瘤进展过程中的癌症免疫动力学以改善免疫治疗。

ImmuProgML: machine learning-based dissection of cancer-immune dynamics during tumor progression to improve immunotherapy.

作者信息

Zhou Hanxiao, Mei Lan, Lu Qianyi, Zhang Yakun, Sun Yue, Zhang Caiyu, Jiang Han, Zhou Jiajun, Li Xia, Zhang Yunpeng, Ning Shangwei

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.

Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.

出版信息

J Transl Med. 2025 Jul 25;23(1):826. doi: 10.1186/s12967-025-06872-x.

Abstract

BACKGROUND

Cancer progression involves distinct stages, with a critical tipping point marking the transition from early to advanced phases, driven by complex tumor-immune dynamics. While immunotherapy has significantly improved outcomes, current biomarker models lack integration of cancer-immune interactions and progression dynamics. Leveraging advances in machine learning, there is an urgent need for a comprehensive framework to systematically analyze these dynamics, predict immunotherapy responses, and improve patient outcomes.

METHODS

We developed ImmuProgML framework by integrating multi-omics data and dynamic network biomarker (DNB) analysis to identify key pathways and critical stages in cancer progression, tested in melanoma and non-small cell lung cancer (NSCLC). We introduced the DNEX score, which combines expression changes with immunotherapy-driven network topologies, and employed machine learning algorithms for prognostic and immunotherapy response predictions. We utilized molecular docking to identify potential therapeutic targets and drug candidates.

RESULTS

ImmuProgML pinpointed tipping points at stage III for melanoma and stage II for NSCLC, characterized by accelerated disease progression, significant survival differences, heightened DNA damage repair mechanisms, and enhanced immune responses, with lymph nodes as pivotal hubs. By introducing the DNEX score, an integrative metric combining differential expression and network analysis, ImmuProgML evaluated gene immunomodulation activity during tumor progression and identified immunotherapy targets. High DNEX score correlated with immune-related pathways, including T cell activation and PD1 signaling, in melanoma and NSCLC. Using DNEX score, 62 machine learning models were integrated to create DNEX-SM, which predicted immunotherapy prognosis in melanoma with a C-index of 0.69, a perfect 3-year survival AUC of 1.0 in the GSE78220 dataset, and an AUC of 0.94 in the VanAllen_Science_2015 dataset, outperforming 35 published signatures. DNEX-RM, another immunotherapy response classifier within ImmuProgML, achieved an F1 score of 81.91% and AUCs of 0.912 in training, 0.877 in cross-validation, and 0.749 in testing, with an average AUC improvement of 0.053 across three datasets compared to other methods. Furthermore, DNEX ranking and molecular docking analysis identified four potent protein-drug pairs with strong binding affinities and unique binding pockets: CXCR4 with PIK-93, LCK with PAC-1, PRKCB with SNX-2112, and PRKCB with PIK-93.

CONCLUSIONS

ImmuProgML offers a promising avenue for understanding the intricate relationship between tumors and the immune system, providing a machine learning framework for personalized cancer immunotherapy selections.

摘要

背景

癌症进展涉及不同阶段,由复杂的肿瘤-免疫动力学驱动,存在一个关键转折点标志着从早期到晚期的转变。虽然免疫疗法显著改善了治疗结果,但目前的生物标志物模型缺乏对癌症-免疫相互作用和进展动力学的整合。利用机器学习的进展,迫切需要一个综合框架来系统分析这些动力学,预测免疫疗法反应并改善患者预后。

方法

我们通过整合多组学数据和动态网络生物标志物(DNB)分析开发了ImmuProgML框架,以识别癌症进展中的关键途径和关键阶段,并在黑色素瘤和非小细胞肺癌(NSCLC)中进行了测试。我们引入了DNEX评分,该评分将表达变化与免疫疗法驱动的网络拓扑结构相结合,并采用机器学习算法进行预后和免疫疗法反应预测。我们利用分子对接来识别潜在的治疗靶点和候选药物。

结果

ImmuProgML确定了黑色素瘤III期和NSCLC II期的转折点,其特征为疾病进展加速、显著的生存差异、DNA损伤修复机制增强和免疫反应增强,淋巴结是关键枢纽。通过引入DNEX评分,一种结合差异表达和网络分析的综合指标,ImmuProgML评估了肿瘤进展过程中的基因免疫调节活性并识别了免疫疗法靶点。在黑色素瘤和NSCLC中,高DNEX评分与免疫相关途径相关,包括T细胞活化和PD1信号传导。使用DNEX评分,整合了62个机器学习模型以创建DNEX-SM,其在黑色素瘤中预测免疫疗法预后的C指数为0.69,在GSE78220数据集中3年生存AUC完美为1.0,在VanAllen_Science_2015数据集中AUC为0.94,优于35个已发表的特征。ImmuProgML中的另一种免疫疗法反应分类器DNEX-RM在训练中的F1评分为81.91%,AUC在训练中为0.912,交叉验证中为0.877,测试中为0.749,与其他方法相比,在三个数据集中平均AUC提高了0.053。此外,DNEX排名和分子对接分析确定了四对具有强结合亲和力和独特结合口袋的有效蛋白质-药物对:CXCR4与PIK-93、LCK与PAC-1、PRKCB与SNX-2112以及PRKCB与PIK-93。

结论

ImmuProgML为理解肿瘤与免疫系统之间的复杂关系提供了一条有前景的途径,为个性化癌症免疫疗法选择提供了一个机器学习框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验