Srinivasan Vijaya Bharathi, Rajasekar Naveenraj, Krishnan Karthikeyan, Kumar Mahesh, Giri Chankit, Singh Balvinder, Rajamohan Govindan
CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
Biological Sciences Division, Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
Antibiotics (Basel). 2025 Jun 30;14(7):667. doi: 10.3390/antibiotics14070667.
Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research's surveillance network identifies as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Whole-genome sequencing of strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin-antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. This study presents a comprehensive genomic profile of . ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance.
关键病原体的遗传可塑性和适应性伪装导致了多重耐药(MDR)感染在全球范围内激增,对公众健康和治疗效果构成了严重威胁。抗菌药物耐药性现已成为全球死亡的主要原因,需要通过诊断、疫苗和治疗手段采取紧急行动。在印度,印度医学研究理事会的监测网络将其确定为尿路感染的主要原因,在人类肠道微生物群中的患病率不断上升,凸显了其在“同一健康”领域的重要性。使用Illumina NextSeq平台对从人类肠道样本中分离出的菌株ECG015进行了全基因组测序。基因组分析揭示了多个抗生素耐药基因、毒力因子和外排泵组件。系统发育基因组比较显示与来自人类和动物来源的致病型密切相关。值得注意的是,该基因组编码蛋白酪氨酸激酶(Etk/Ptk和Wzc),并在包膜应激反应CpxAR双组分系统中表现出变异。启动子分析确定了参与耐药、外排、蛋白激酶和MazEF毒素-抗毒素模块的基因上游的假定CpxR结合位点,表明CpxAR在应激反应和持续性中具有潜在的调节作用。本研究展示了ECG015的全面基因组概况,这是一种来自肠道的分离株,具有临床上显著的耐药特征。首次将CpxAR双组分系统牵连为协调抗菌耐药性、应激激酶信号传导和程序性细胞死亡的潜在核心调节因子。这些发现为未来旨在针对应激反应途径作为抗微生物耐药性新干预策略的功能研究奠定了基础。