Suppr超能文献

癌细胞中线粒体功能的失调

Dysregulation of Mitochondrial Function in Cancer Cells.

作者信息

Awad Ahmed Mahmoud Ahmed Mahmoud, Abdul Karim Norwahidah

机构信息

Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.

出版信息

Int J Mol Sci. 2025 Jul 14;26(14):6750. doi: 10.3390/ijms26146750.

Abstract

In addition to their well-known role in ATP production, mitochondria are vital to cancer cell metabolism due to their involvement in redox regulation, apoptosis, calcium signaling, and biosynthesis. This review explores how cancer cells drive the extensive reprogramming of mitochondrial structure and function, enabling malignant cells to survive hostile microenvironments, evade therapy, and proliferate rapidly. While glycolysis (the Warburg effect) was once thought to be the dominant force behind cancer metabolism, recent updates underscore the pivotal contribution of mitochondrial oxidative phosphorylation (OXPHOS) to tumor development. Cancer cells often exhibit enhanced mitochondrial ATP production, metabolic flexibility, and the ability to switch between energy sources such as glucose, glutamine, and pyruvate. Equally important are changes in mitochondrial morphology and dynamics. Due to disruptions in fusion and fission processes, regulated by proteins like Drp1 and MFN1/2, cancer cells often display fragmented mitochondria, which are linked to increased motility, metastasis, and tumor progression. Moreover, structural mitochondrial alterations not only contribute to drug resistance but may also serve as biomarkers for therapeutic response. Emerging evidence also points to the influence of oncometabolites and retrograde signaling in reshaping mitochondrial behavior under oncogenic stress. Collectively, these insights position mitochondria as central regulators of cancer biology and attractive targets for therapy. By unraveling the molecular mechanisms underlying mitochondrial reprogramming-from energy production to structural remodeling-researchers can identify new approaches to disrupt cancer metabolism and enhance treatment efficacy.

摘要

除了在ATP生成中广为人知的作用外,线粒体对癌细胞代谢也至关重要,因为它们参与氧化还原调节、细胞凋亡、钙信号传导和生物合成。本综述探讨了癌细胞如何驱动线粒体结构和功能的广泛重编程,使恶性细胞能够在恶劣的微环境中存活、逃避治疗并快速增殖。虽然糖酵解(瓦伯格效应)曾被认为是癌症代谢背后的主导力量,但最近的研究进展强调了线粒体氧化磷酸化(OXPHOS)对肿瘤发展的关键作用。癌细胞通常表现出线粒体ATP生成增强、代谢灵活性以及在葡萄糖、谷氨酰胺和丙酮酸等能源之间切换的能力。同样重要的是线粒体形态和动力学的变化。由于由Drp1和MFN1/2等蛋白质调节的融合和裂变过程受到破坏,癌细胞通常显示出线粒体碎片化,这与运动性增加、转移和肿瘤进展有关。此外,线粒体结构改变不仅导致耐药性,还可能作为治疗反应的生物标志物。新出现的证据还表明,致癌代谢物和逆行信号在致癌应激下重塑线粒体行为方面具有影响。总的来说,这些见解将线粒体定位为癌症生物学的核心调节因子和有吸引力的治疗靶点。通过揭示线粒体重编程背后的分子机制——从能量产生到结构重塑——研究人员可以确定破坏癌症代谢和提高治疗效果的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b29/12295676/b0b0f71b076e/ijms-26-06750-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验