Suppr超能文献

10058 - F4介导的多重耐药菌生物膜形成抑制作用

10058-F4 Mediated inhibition of the biofilm formation in multidrug-resistant .

作者信息

Dodia Hiren, Ojha Suvendu, Chatterjee Puja, Beuria Tushar Kant

机构信息

Department of Infectious Disease Biology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.

Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India.

出版信息

Biofilm. 2025 Jul 16;10:100307. doi: 10.1016/j.bioflm.2025.100307. eCollection 2025 Dec.

Abstract

Antimicrobial resistance (AMR) is a global concern that undermines microbial disease treatment and prevention. WHO and World Bank's EcoAMR report predicts that AMR could cause 39 million deaths and $3.4 trillion in annual GDP losses by the year 2050. This is particularly critical with , a cause of diverse infections like skin abscesses and pneumonia, where antibiotic resistance increases mortality and hinders treatment. Biofilms are one of the major causes of multi-drug resistance in and their inhibition can restore antibiotic sensitivity. In this study, through screening of the LOPAC drug library, we identified several compounds that exhibit biofilm inhibitory properties against multi-drug-resistant without affecting its growth. The compound 10058-F4 was found to have the strongest -biofilm activity (>70 % inhibition) with minimal antibacterial effects (MIC 256 μg/mL); however, it showed no inhibitory effects on pre-existing biofilm. Further, the 10058-F4 treatment suppressed the expression of the biofilm master regulator, along with biofilm genes, such as . Additionally, the results showed that 10058-F4 synergistically enhanced the antibacterial activity of norfloxacin and tetracycline, indicating its potential use as an adjunct to the existing antibiotic treatments. While these findings suggest the potential of 10058-F4 for clinical use, further investigations are necessary to elucidate its mechanism of action and optimize its application in combination therapies.

摘要

抗菌药物耐药性(AMR)是一个全球关注的问题,它破坏了微生物疾病的治疗和预防。世界卫生组织(WHO)和世界银行的《抗微生物药物耐药性经济学报告》预测,到2050年,AMR可能导致3900万人死亡,每年造成3.4万亿美元的国内生产总值损失。这一情况在[具体微生物名称未给出]中尤为关键,它会引发多种感染,如皮肤脓肿和肺炎,抗生素耐药性会增加死亡率并阻碍治疗。生物膜是[具体微生物名称未给出]中多重耐药的主要原因之一,抑制生物膜可以恢复抗生素敏感性。在本研究中,通过筛选LOPAC药物库,我们鉴定出了几种对多重耐药[具体微生物名称未给出]具有生物膜抑制特性且不影响其生长的化合物。发现化合物10058 - F4具有最强的[具体微生物名称未给出]生物膜活性(抑制率>70%),抗菌作用最小(最低抑菌浓度为256μg/mL);然而,它对已形成的生物膜没有抑制作用。此外,10058 - F4处理抑制了生物膜主调节因子以及生物膜相关基因(如[具体基因名称未给出])的表达。另外,结果表明10058 - F4能协同增强诺氟沙星和四环素的抗菌活性,表明其有作为现有抗生素治疗辅助药物的潜在用途。虽然这些发现表明10058 - F4具有临床应用潜力,但仍需要进一步研究以阐明其作用机制并优化其在联合治疗中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f7/12302182/8243794a8671/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验