Young Paul G, Fiedorczuk Karol, Chen Jue
Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.
Nat Commun. 2025 Aug 1;16(1):7059. doi: 10.1038/s41467-025-62199-7.
Hyperactivation of the cystic fibrosis transmembrane conductance regulator (CFTR) contributes to secretory diarrhea, a major cause of pediatric mortality worldwide, and autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of end-stage renal disease. Selective CFTR inhibition is a potential therapeutic strategy, with (R)-BPO-27 emerging as a promising candidate. Here, we present a cryo-EM structure of CFTR bound to (R)-BPO-27 at an overall resolution of 2.1 Å. Contrary to the previous hypothesis that it inhibits CFTR current by competition with ATP, we demonstrate that (R)-BPO-27 instead directly occludes the chloride-conducting pore while permitting ATP hydrolysis, thus uncoupling the two activities. Furthermore, we find that inhibitor binding requires some degree of NBD separation, as the inhibition rate inversely correlates with the probability NBD dimerization. These findings clarify the compound's mechanism and provide a molecular basis for optimizing its clinical potential.
囊性纤维化跨膜传导调节因子(CFTR)的过度激活会导致分泌性腹泻(这是全球儿童死亡的主要原因)和常染色体显性遗传性多囊肾病(ADPKD,终末期肾病最常见的遗传病因)。选择性抑制CFTR是一种潜在的治疗策略,(R)-BPO-27已成为一个有前景的候选药物。在此,我们展示了CFTR与(R)-BPO-27结合的冷冻电镜结构,整体分辨率为2.1Å。与之前认为它通过与ATP竞争来抑制CFTR电流的假设相反,我们证明(R)-BPO-27反而直接封闭了氯离子传导孔,同时允许ATP水解,从而使这两种活动解偶联。此外,我们发现抑制剂结合需要一定程度的核苷酸结合结构域(NBD)分离,因为抑制率与NBD二聚化的概率呈负相关。这些发现阐明了该化合物的作用机制,并为优化其临床潜力提供了分子基础。