Nakagawa Yuna, Kawaguchi Yoshimasa, Hirose Hisaaki, Hashiguchi Takao, Lee Joseph, Hotta Akitsu, Kawamoto Jun, Sasaki Michihito, Sawa Hirofumi, Futaki Shiroh
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
Biomaterials. 2026 Feb;325:123594. doi: 10.1016/j.biomaterials.2025.123594. Epub 2025 Aug 4.
Coronavirus disease (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has been the biggest pandemic in recent years, and there is a growing demand for the development of new modalities to treat emerging infections rapidly. Extracellular vesicles (EVs) are promising new biocompatible drug carriers; however, their specificity and delivery efficiency remain challenging. In this study, we aimed to develop EVs displaying the SARS-CoV-2 Spike (S) protein as a new modality to inhibit SARS-CoV-2 infection. The S protein-displaying EVs which were the pellet fractions of centrifugation at 10,000×g (S-EVs) were found to selectively bind to cells expressing angiotensin-converting enzyme 2 (ACE2). Cleavage of the S protein using proteases such as transmembrane serine protease 2 (TMPRSS2) and cathepsins led to successful membrane fusion of the EVs with the target cell. Experiments using viral infection inhibitors in TMPRSS2-expressing Vero E6 cells further confirmed the membrane fusion of S-EVs in an ACE2-and TMPRSS2-dependent manner. Additionally, we demonstrated the potential of S-EVs as novel mRNA carriers to inhibit SARS-CoV-2 infection by encapsulating the mRNA encoding HAI-2, a TMPRSS2-inhibiting membrane protein. Marked suppression of SARS-CoV-2 entry into TMPRSS2-expressing Vero E6 cells was confirmed using pseudotyped virus-like particles. These findings suggest the potential of S-EVs for selective mRNA delivery to target cells via membrane fusion, serving as a new modality for inhibiting SARS-CoV-2 infection by delivering mRNA encoding inhibitory proteins.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的冠状病毒病(COVID-19)是近年来最大的大流行病,对迅速开发治疗新出现感染的新方法的需求日益增长。细胞外囊泡(EVs)是有前景的新型生物相容性药物载体;然而,它们的特异性和递送效率仍然具有挑战性。在本研究中,我们旨在开发展示SARS-CoV-2刺突(S)蛋白的细胞外囊泡,作为一种抑制SARS-CoV-2感染的新方法。发现展示S蛋白的细胞外囊泡(即10,000×g离心的沉淀部分,S-EVs)能选择性地与表达血管紧张素转换酶2(ACE2)的细胞结合。使用跨膜丝氨酸蛋白酶2(TMPRSS2)和组织蛋白酶等蛋白酶切割S蛋白,导致细胞外囊泡与靶细胞成功膜融合。在表达TMPRSS2的Vero E6细胞中使用病毒感染抑制剂的实验进一步证实了S-EVs以ACE2和TMPRSS2依赖的方式进行膜融合。此外,我们通过封装编码HAI-2(一种抑制TMPRSS2的膜蛋白)的mRNA,证明了S-EVs作为新型mRNA载体抑制SARS-CoV-2感染的潜力。使用假型病毒样颗粒证实了SARS-CoV-2进入表达TMPRSS2的Vero E6细胞受到显著抑制。这些发现表明,S-EVs有可能通过膜融合将mRNA选择性递送至靶细胞,作为一种通过递送编码抑制蛋白的mRNA来抑制SARS-CoV-2感染的新方法。