Kim Seonghoon, Yoon Jongmin, Ko Gwanho, Kang Iksung, Tian He, Fan Linlin Z, Li Yixin, Xiao Guihua, Zhang Qi, Cohen Adam E, Wu Jiamin, Dai Qionghai, Choi Myunghwan
School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
The Institute of Molecular Biology and Genetics, Seoul, 08826, Republic of Korea.
Nat Commun. 2025 Aug 5;16(1):7194. doi: 10.1038/s41467-025-62663-4.
Functional imaging of biological dynamics generally begins with acquiring time-series images, followed by quantifying spatially averaged intensity traces for the regions of interest (ROIs). The conventional pipeline discards a substantial portion of the acquired data when quantifying intensity traces, indicative of inefficient data acquisition. Here we propose a conceptually novel acquisition pipeline that assigns each ROI to a single pixel in the detector, enabling optimally compressed acquisition of the intensity traces. As a proof-of-principle, we implemented a detection module composed of a pair of spatial light modulators and a microlens array, which segments the original image into multiple subimages by introducing distinct angular shifts to each ROI. Each subimage exclusively encodes the signal for the corresponding ROI, facilitating the compressed readout of its intensity trace using a single pixel. This spatial compression allowed for maximizing the temporal information without compromising the spatial information on ROIs. Harnessing our novel approach, we demonstrate the recording of circuit-scale neuronal voltage dynamics at over 5 kHz sampling rate, revealing the individual action potential waveforms within subcellular structures, as well as their submillisecond-scale temporal delays.
生物动力学的功能成像通常始于获取时间序列图像,随后对感兴趣区域(ROI)的空间平均强度轨迹进行量化。传统流程在量化强度轨迹时会丢弃大量采集到的数据,这表明数据采集效率低下。在此,我们提出一种概念新颖的采集流程,该流程将每个ROI分配到探测器中的单个像素,从而实现强度轨迹的最优压缩采集。作为原理验证,我们实现了一个由一对空间光调制器和一个微透镜阵列组成的检测模块,该模块通过为每个ROI引入不同的角位移,将原始图像分割成多个子图像。每个子图像专门编码对应ROI的信号,便于使用单个像素对其强度轨迹进行压缩读出。这种空间压缩能够在不损失ROI空间信息的情况下最大化时间信息。利用我们的新方法,我们展示了以超过5kHz的采样率记录电路规模的神经元电压动态,揭示了亚细胞结构内的单个动作电位波形及其亚毫秒级的时间延迟。