Padalko Anastasiia, Karavaeva Val, Zamarreno Beas Jordi, Neukirchen Sinje, Sousa Filipa L
Department of Functional and Evolutionary Ecology, University of Vienna Faculty of Life Sciences, Vienna, Austria.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240102. doi: 10.1098/rstb.2024.0102.
The history of life intrigues both researchers and society, as it is human nature to question our origins. Our understanding of microbial evolution comes mainly from genomic data and geological evidence. Recent advances in sequencing technologies are revealing vast insights into microbial diversity, especially among uncultured lineages. While metagenomics indicates the existence of novel lineages, their ecological functions remain unknown. To unlock these mysteries, we need to shift focus from genomics to understanding their physiology. A barrier to understanding environmental microbes lies in our limited knowledge of their energy-harnessing and conservation strategies. Phylogenetic trees built from universal genes can group thousands of lineages but fail to capture the entire genome or reflect key physiological traits, especially with lateral gene transfer complicating evolutionary patterns. To deepen our knowledge of microbial evolution, a promising strategy combines large-scale comparative phylogenetic analyses of genes related to physiology with experimental data. Geochemical records of ancient energy sources can act as evolutionary constraints. This top-down approach would help rule out traits that could not be ancient, narrowing the physiological possibilities of early microbial life. Focusing on how microbes harnessed energy during evolution could bridge the gap between geochemistry and microbiology, providing testable predictions about bioenergetic transitions.This article is part of the discussion meeting issue 'Chance and purpose in the evolution of biospheres'.
生命的历史既吸引着研究人员,也引发了社会的兴趣,因为质疑我们的起源是人类的天性。我们对微生物进化的理解主要来自基因组数据和地质证据。测序技术的最新进展正在揭示有关微生物多样性的大量见解,尤其是在未培养谱系中。虽然宏基因组学表明存在新的谱系,但其生态功能仍然未知。为了解开这些谜团,我们需要将重点从基因组学转移到了解它们的生理学上。理解环境微生物的一个障碍在于我们对其能量获取和守恒策略的了解有限。基于通用基因构建的系统发育树可以将数千个谱系分组,但无法涵盖整个基因组或反映关键的生理特征,特别是横向基因转移使进化模式变得复杂。为了加深我们对微生物进化的认识,一个有前景的策略是将与生理学相关基因的大规模比较系统发育分析与实验数据相结合。古代能源的地球化学记录可以作为进化的限制因素。这种自上而下的方法将有助于排除不可能是古老的特征,缩小早期微生物生命的生理可能性范围。关注微生物在进化过程中如何获取能量可以弥合地球化学和微生物学之间的差距,提供关于生物能量转变的可测试预测。本文是“生物圈进化中的机遇与目的”讨论会议题的一部分。