Suppr超能文献

Detection of carbapenemase production in Enterobacterales by mCIM and eCIM: a tertiary care hospital study.

作者信息

Shafi Touseefa, Mir Anjum Ara, Roohi Shagufta, Fomda Bashir, Wani Sanam Rasool, Ahmed Tufail, Yousuf Samiah

机构信息

Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Jammu & Kashmir, India.

出版信息

Iran J Microbiol. 2025 Aug;17(4):539-548. doi: 10.18502/ijm.v17i4.19227.

Abstract

BACKGROUND AND OBJECTIVES

Carbapenem-resistant Enterobacterales (CRE) pose a major healthcare challenge due to high resistance rates and limited treatment options. This study characterized carbapenemase production among CRE isolates using phenotypic methods-Modified Carbapenem Inactivation Method (mCIM) and EDTA-Carbapenem Inactivation Method (eCIM)-as genotypic methods have limitations like restricted gene targets and mutations.

MATERIALS AND METHODS

This six-month study was conducted at Sher-i-Kashmir Institute of Medical Sciences (SKIMS). Samples including swabs, respiratory specimens, pus, body fluids, and blood were cultured on Blood Agar and MacConkey Agar (HiMedia, India). Enterobacterales were identified using conventional methods and screened for carbapenem resistance. CRE isolates underwent mCIM and eCIM testing per CLSI guidelines.

RESULTS

Among 471 Enterobacterales isolates tested, 160 (33.9%) were carbapenem-resistant. Of these, 97 (60.6%) were mCIM positive, indicating carbapenemase production. eCIM further identified 83 (85.5%) as metallo-beta-lactamase (MBL) producers and 14 (14.4%) as serine carbapenemase producers. CRE prevalence was higher in ICU settings and among males. Isolates showed high cephalosporin resistance, with multi-drug resistance (MDR) common in both MBL and serine carbapenemase producers.

CONCLUSION

The prevalence of CRE was found to be 33.9%. The findings underscore the critical need for continuous surveillance and stringent infection control measures to manage the spread of CRE in healthcare settings.

摘要

相似文献

1
Detection of carbapenemase production in Enterobacterales by mCIM and eCIM: a tertiary care hospital study.
Iran J Microbiol. 2025 Aug;17(4):539-548. doi: 10.18502/ijm.v17i4.19227.
3
An update on carbapenem-resistant Enterobacterales: A prospective study from Western India.
J Postgrad Med. 2025 Apr 1;71(2):61-67. doi: 10.4103/jpgm.jpgm_558_24. Epub 2025 Jun 9.
4
Evaluation of point mutation carbapenemase-producing in Prapokklao Hospital, Thailand.
Microbiol Spectr. 2024 Oct 17;12(12):e0019824. doi: 10.1128/spectrum.00198-24.
7
Prevalence and characteristics of ertapenem-mono-resistant isolates among carbapenem-resistant Enterobacterales in China.
Emerg Microbes Infect. 2024 Dec;13(1):2332658. doi: 10.1080/22221751.2024.2332658. Epub 2024 Apr 3.

本文引用的文献

2
Epidemiology and clinical significance of carbapenemases in Australia: a narrative review.
Intern Med J. 2024 Apr;54(4):535-544. doi: 10.1111/imj.16374. Epub 2024 Apr 8.
3
Identification of Two Novel Carbapenemase-Encoding Hybrid Plasmids Harboring and in a Clinical ST11-KL47 .
Infect Drug Resist. 2023 Jun 24;16:4073-4081. doi: 10.2147/IDR.S408824. eCollection 2023.
4
Antibiotic Susceptibility Patterns for Carbapenem-Resistant Enterobacteriaceae.
Int J Microbiol. 2023 Feb 20;2023:8920977. doi: 10.1155/2023/8920977. eCollection 2023.
5
<Editors' Choice> Multicenter survey for carbapenemase-producing Enterobacterales in central Japan.
Nagoya J Med Sci. 2022 Aug;84(3):630-639. doi: 10.18999/nagjms.84.3.630.
6
Cost-effectiveness of strategies to control the spread of carbapenemase-producing Enterobacterales in hospitals: a modelling study.
Antimicrob Resist Infect Control. 2022 Sep 19;11(1):117. doi: 10.1186/s13756-022-01149-0.
8
Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli.
PLoS One. 2021 Nov 1;16(11):e0259005. doi: 10.1371/journal.pone.0259005. eCollection 2021.
10
The Battle Is on: New Beta-Lactams for the Treatment of Multidrug-Resistant Gram-Negative Organisms.
Curr Infect Dis Rep. 2020 Jan 13;22(1):1. doi: 10.1007/s11908-020-0710-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验