Rahimikollu Javad, Roy Priyamvada Guha, Kishore Akash, Lee Danica Morgan, Vanderlinden Lauren A, Nazarali Kiran, Zhang Fan, Ascherman Dana P, Schwartz Daniella M, Moreland Larry, Das Jishnu
medRxiv. 2025 Aug 5:2025.07.31.25331970. doi: 10.1101/2025.07.31.25331970.
Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by clinical and molecular heterogeneity, notably in the presence of anti-cyclic citrullinated peptide antibodies (CCP). CCP positivity in RA patients is associated with more severe disease progression and distinct responses to treatment compared to CCP-patients. Although previous studies have investigated cellular and molecular differences between these RA subtypes, there has been limited exploration of their genetic differences at a systems scale, taking into account underlying molecular networks.
Here, we use a novel multi-scale framework that couples a network-based genome-wide association study (GWAS) to functional genomic data to uncover network modules distinguishing CCP+ and CCP-RA.
We utilized the RACER (Rheumatoid Arthritis Comparative Effectiveness Research) cohort, comprising 555 CCP+/RF+ and 384 CCP-/RF+ RA patients, and uncovered significant differences in heritability between these two disease groups. This was followed by a network-based GWAS which uncovered 14 putative gene modules that explained genetic differences between CCP+/RF+ and CCP-/RF+ RA. Interestingly, these included many genes outside the HLA locus. Further validation through heritability partitioning and multivariate expression analyses underscored the significance of specific modules, highlighting novel genetic loci driving heterogeneity in antibody prevalence in RA. The identified modules were validated in a completely orthogonal cohort from the All of Us program. Functional analysis revealed that these modules captured critical molecular programs that not only relate to serological variation but also underlie broader functional heterogeneity in RA, including differences in synovial cell-type abundance phenotypes and variation in treatment response.
Our findings demonstrate the utility of network-based approaches in elucidating the complex genetic landscape of RA, offering new insights into the differential genetic risk factors underlying CCP+/RF+ and CCP-/RF+ RA, and paving the way for more personalized therapeutic strategies.
类风湿关节炎(RA)是一种复杂的自身免疫性疾病,其特征在于临床和分子异质性,尤其是在存在抗环瓜氨酸肽抗体(CCP)的情况下。与CCP阴性患者相比,RA患者中的CCP阳性与更严重的疾病进展和对治疗的不同反应相关。尽管先前的研究已经调查了这些RA亚型之间的细胞和分子差异,但考虑到潜在的分子网络,在系统规模上对它们的遗传差异进行的探索仍然有限。
在这里,我们使用了一种新颖的多尺度框架,该框架将基于网络的全基因组关联研究(GWAS)与功能基因组数据相结合,以发现区分CCP阳性和CCP阴性RA的网络模块。
我们利用了类风湿关节炎比较疗效研究(RACER)队列,该队列包括555名CCP阳性/RF阳性和384名CCP阴性/RF阳性RA患者,并发现这两个疾病组之间在遗传力上存在显著差异。随后进行了基于网络的GWAS,发现了14个假定的基因模块,这些模块解释了CCP阳性/RF阳性和CCP阴性/RF阳性RA之间的遗传差异。有趣的是,这些基因包括HLA基因座以外的许多基因。通过遗传力划分和多变量表达分析进行的进一步验证强调了特定模块的重要性,突出了驱动RA中抗体患病率异质性的新基因座。在来自“我们所有人”计划的完全正交队列中对鉴定出的模块进行了验证。功能分析表明,这些模块捕获了关键的分子程序,这些程序不仅与血清学变异有关,而且还是RA中更广泛功能异质性的基础,包括滑膜细胞类型丰度表型的差异和治疗反应的变异。
我们的研究结果证明了基于网络的方法在阐明RA复杂遗传格局方面的实用性,为CCP阳性/RF阳性和CCP阴性/RF阳性RA潜在的差异遗传风险因素提供了新见解,并为更个性化的治疗策略铺平了道路。