Suppr超能文献

使用电子健康记录的Transformer患者嵌入可实现患者分层和病情进展分析。

Transformer patient embedding using electronic health records enables patient stratification and progression analysis.

作者信息

Xian Su, Grabowska Monika E, Kullo Iftikhar J, Luo Yuan, Smoller Jordan W, Walunas Theresa L, Wei Wei-Qi, Jarvik Gail P, Mooney Sean D, Crosslin David R

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

NPJ Digit Med. 2025 Aug 14;8(1):521. doi: 10.1038/s41746-025-01872-z.

Abstract

Current studies regarding the secondary use of electronic health records (EHR) predominantly rely on domain expertise and existing medical knowledge. A powerful representation approach can unleash the potential of discovering new medical patterns underlying the EHR. Here, we introduce an unsupervised method for embedding high-dimensional EHR data at the patient level to characterize heterogeneity in complex diseases and identify novel disease patterns linked to disparities in clinical outcomes. We applied this approach to 34,851 unique medical codes across 1,046,649 longitudinal patient events, including 102,740 patients in the Electronic Medical Records and GEnomics (eMERGE) Network. The model achieved strong predictive performance in predicting future disease (median AUROC = 0.87 within one year) and bulk phenotyping (median AUROC = 0.84). Notably, these patient embeddings revealed diverse comorbidity profiles and health outcomes, including distinct subtypes and progression patterns in colorectal cancer and systemic lupus erythematosus.

摘要

当前关于电子健康记录(EHR)二次利用的研究主要依赖领域专业知识和现有的医学知识。一种强大的表示方法能够释放发现EHR背后新医学模式的潜力。在此,我们介绍一种无监督方法,用于在患者层面嵌入高维EHR数据,以表征复杂疾病中的异质性,并识别与临床结果差异相关的新型疾病模式。我们将此方法应用于1046649个纵向患者事件中的34851个独特医学编码,这些患者事件来自电子病历与基因组学(eMERGE)网络中的102740名患者。该模型在预测未来疾病(一年内的中位数受试者工作特征曲线下面积[AUROC]=0.87)和总体表型分析(中位数AUROC=0.84)方面取得了强大的预测性能。值得注意的是,这些患者嵌入显示出不同的共病概况和健康结果,包括结直肠癌和系统性红斑狼疮的不同亚型和进展模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验