Suppr超能文献

整合微小RNA分析与机器学习以改善前列腺癌诊断

Integrating miRNA profiling and machine learning for improved prostate cancer diagnosis.

作者信息

Singh Shweta, Pathak Abhay Kumar, Kural Sukhad, Kumar Lalit, Bhardwaj Madan Gopal, Yadav Mahima, Trivedi Sameer, Das Parimal, Gupta Manjari, Jain Garima

机构信息

MIRNOW, BIONEST, Banaras Hindu University, Varanasi, India.

DST-CIMS, Institute of Science, Banaras Hindu University, Varanasi, India.

出版信息

Sci Rep. 2025 Aug 20;15(1):30477. doi: 10.1038/s41598-025-99754-7.

Abstract

Prostate cancer (PCa) diagnosis remains challenging due to overlapping clinical features with benign prostatic hyperplasia (BPH) and limitations of existing diagnostic tools like PSA tests, which yield high false-positive rates. This study investigates the potential of microRNA (miRNA) biomarkers, analyzed via reverse transcription polymerase chain reaction and machine learning (ML), to enhance diagnostic accuracy. miRNAs such as miR-21-5p, miR-141-3p, and miR-221-3p were identified as significant discriminators between PCa and BPH through a prospective cohort study. Whole blood miRNA profiling offered a robust systemic representation of disease states. A random forest ML model was trained on expression data, achieving notable performance metrics: an accuracy of 77.42%, AUC of 0.78 during verification, and 74.07% accuracy and 0.75 AUC in validation. The model's use of miRNA expression ratios, such as miR-141-3p/miR-221-3p, demonstrated superior sensitivity and specificity over traditional PSA testing. Bioinformatics analysis confirmed the association of selected miRNAs with cancer pathways, including PD-L1/PD-1 checkpoint and androgen receptor signaling, validating the biological relevance of the findings. This novel integration of miRNA profiling and machine learning holds great potential for the clinical translation of miRNA-based non-invasive diagnostics, enhancing diagnostic precision. However, broader population studies and standardization of protocols are needed to ensure scalability and clinical applicability. This research provides a foundational framework for advancing miRNA-based diagnostics, bridging discovery and clinical implementation.

摘要

由于前列腺癌(PCa)与良性前列腺增生(BPH)的临床特征重叠,以及现有诊断工具如PSA检测存在局限性,导致其假阳性率较高,因此PCa的诊断仍然具有挑战性。本研究通过逆转录聚合酶链反应和机器学习(ML)分析,探讨了微小RNA(miRNA)生物标志物提高诊断准确性的潜力。通过前瞻性队列研究,发现miR-21-5p、miR-141-3p和miR-221-3p等miRNA是PCa和BPH之间的重要鉴别指标。全血miRNA谱提供了疾病状态的可靠系统表征。基于表达数据训练了随机森林ML模型,取得了显著的性能指标:验证期间准确率为77.42%,AUC为0.78,验证时准确率为74.07%,AUC为0.75。该模型使用的miRNA表达比值,如miR-141-3p/miR-221-3p,显示出比传统PSA检测更高的敏感性和特异性。生物信息学分析证实了所选miRNA与癌症通路的关联,包括PD-L1/PD-1检查点和雄激素受体信号通路,验证了研究结果的生物学相关性。这种miRNA谱分析与机器学习的新整合在基于miRNA的非侵入性诊断的临床转化方面具有巨大潜力,可提高诊断精度。然而,需要更广泛的人群研究和方案标准化,以确保可扩展性和临床适用性。本研究为推进基于miRNA的诊断提供了基础框架,弥合了发现与临床应用之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验