Suppr超能文献

细胞类型特异性DNA甲基化流行病学研究的设计与分析指南。

Guidance for the design and analysis of cell-type-specific DNA methylation epidemiology studies.

作者信息

Walker Emma M, Dempster Emma L, Franklin Alice, Klokkaris Anthony, Chioza Barry, Davies Jonathan P, Blake Georgina E T, Burrage Joe, Policicchio Stefania, Bamford Rosemary A, Schalkwyk Leonard C, Mill Jonathan, Hannon Eilis

机构信息

Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX2 5DW, United Kingdom.

Italian Institute of Technology Center for Human Technologies (CHT), Via Enrico Melen, 83, 16152 Genova GE, Italy.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf427.

Abstract

Recent studies on the role of epigenetics in disease have focused on DNA methylation (DNAm) profiled in bulk tissues limiting the detection of the cell type affected by disease-related changes. Advances in isolating homogeneous populations of cells now make it possible to identify DNAm differences associated with disease in specific cell types. Critically, these datasets will require a bespoke analytical framework that can characterize whether the difference affects multiple or is specific to a particular cell type. We take advantage of a large set of DNAm profiles (n = 751) obtained from five different purified cell populations isolated from human prefrontal cortex samples and evaluate the effects on study design, data preprocessing, and statistical analysis for cell-specific studies, particularly for scenarios where multiple cell types are included. We describe novel quality control metrics that confirm successful isolation of purified cell populations, which when included in standard preprocessing pipelines provide confidence in the dataset. Our power calculations show substantial gains in detecting differentially methylated positions for some purified cell populations compared to bulk tissue analyses, countering concerns regarding the feasibility of generating large enough sample sizes for informative epidemiological studies. In a simulation study, we evaluated different regression models finding that this choice impacts on the robustness of the results. These findings informed our proposed two-stage framework for association analyses. Overall, our results provide guidance for cell-specific epigenome-wide association studies, establishing standards for study design and analysis, while showcasing the potential of cell-specific DNAm analyses to reveal links between epigenetic dysregulation and disease.

摘要

近期关于表观遗传学在疾病中作用的研究聚焦于在大块组织中分析的DNA甲基化(DNAm),这限制了对受疾病相关变化影响的细胞类型的检测。现在,分离同质细胞群体技术的进步使得识别特定细胞类型中与疾病相关的DNAm差异成为可能。至关重要的是,这些数据集将需要一个定制的分析框架,该框架能够表征这种差异是影响多种细胞类型还是特定于某一种细胞类型。我们利用从人类前额叶皮质样本中分离出的五个不同纯化细胞群体获得的大量DNAm谱(n = 751),并评估其对细胞特异性研究的研究设计、数据预处理和统计分析的影响,特别是对于包含多种细胞类型的情况。我们描述了新的质量控制指标,这些指标证实了纯化细胞群体的成功分离,当将其纳入标准预处理流程时,能为数据集提供可信度。我们的功效计算表明,与大块组织分析相比,在检测某些纯化细胞群体的差异甲基化位点方面有显著提高,消除了对于为有意义的流行病学研究生成足够大样本量可行性的担忧。在一项模拟研究中,我们评估了不同的回归模型,发现这种选择会影响结果的稳健性。这些发现为我们提出的两阶段关联分析框架提供了依据。总体而言,我们的结果为细胞特异性表观基因组全关联研究提供了指导,确立了研究设计和分析的标准,同时展示了细胞特异性DNAm分析在揭示表观遗传失调与疾病之间联系方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84fd/12368846/b19dd0a654f4/bbaf427f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验