Lee Hak Seung, Lee Sooyeon, Kang Sora, Han Ga In, Yoo Ah-Hyun, Jang Jong-Hwan, Jo Yong-Yeon, Son Jeong Min, Lee Min Sung, Kwon Joon-Myoung, Kim Kyung-Hee
Digital Healthcare Institute, Sejong Medical Research Institute, Bucheon, Republic of Korea; Medical AI Co, Ltd, Seoul, Republic of Korea.
Division of Cardiology, Department of Internal Medicine, Incheon Sejong Hospital, Cardiovascular Center, Incheon, Republic of Korea.
JACC Adv. 2025 Aug 21;4(9):102089. doi: 10.1016/j.jacadv.2025.102089.
Left bundle branch block (LBBB) is a common electrocardiogram (ECG) abnormality associated with left ventricular systolic dysfunction (LVSD). Although artificial intelligence (AI)-driven ECG analysis shows promise for LVSD screening, it remains unclear if a general AI-ECG model or one tailored for LBBB patients yields better performance.
This study evaluates 4 AI-ECG models for detecting LVSD in LBBB patients and examines the impact of training cohort definitions.
We developed 4 models using 364,845 ECGs from 4 hospitals: 1) a general AI-ECG model; 2) a model trained on automatically extracted LBBB cases; 3) a model trained on a well-curated single-center LBBB data set with expert review; and 4) a hybrid model employing transfer learning by fine-tuning the general model with single-center LBBB data. LVSD was defined as an ejection fraction ≤40%. All models were externally validated on 1,334 ECGs from another hospital, with performance assessed by area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and predictive values.
In external validation, the transfer learning model achieved the highest AUROC (0.903; 95% CI: 0.887-0.918), closely followed by the general model (0.899; 95% CI: 0.883-0.915); the difference was not significant. Models using automated or expert-based LBBB extraction had lower AUROCs (0.879 and 0.841, respectively). The general model demonstrated high sensitivity, whereas the transfer learning model exhibited superior specificity.
Our findings indicate that a broad AI-ECG model reliably detects LVSD in LBBB patients, and transfer learning offers modest improvements without requiring curated LBBB data sets. Evaluating algorithms in representative clinical populations is essential.
左束支传导阻滞(LBBB)是一种与左心室收缩功能障碍(LVSD)相关的常见心电图(ECG)异常。尽管人工智能(AI)驱动的心电图分析在LVSD筛查方面显示出前景,但尚不清楚通用的AI-ECG模型还是为LBBB患者量身定制的模型能产生更好的性能。
本研究评估4种AI-ECG模型用于检测LBBB患者的LVSD,并检验训练队列定义的影响。
我们使用来自4家医院的364,845份心电图开发了4种模型:1)通用AI-ECG模型;2)基于自动提取的LBBB病例训练的模型;3)基于经过精心整理且有专家审核的单中心LBBB数据集训练的模型;4)通过用单中心LBBB数据微调通用模型采用迁移学习的混合模型。LVSD定义为射血分数≤40%。所有模型在另一家医院的1,334份心电图上进行外部验证,通过受试者操作特征曲线下面积(AUROC)、敏感性、特异性和预测值评估性能。
在外部验证中,迁移学习模型达到最高的AUROC(0.903;95%CI:0.887-0.918),紧随其后的是通用模型(0.899;95%CI:0.883-0.915);差异不显著。使用自动或基于专家的LBBB提取的模型AUROC较低(分别为0.879和0.841)。通用模型显示出高敏感性,而迁移学习模型表现出更高的特异性。
我们的研究结果表明,广泛的AI-ECG模型能够可靠地检测LBBB患者的LVSD,并且迁移学习无需精心整理的LBBB数据集即可带来适度改进。在具有代表性的临床人群中评估算法至关重要。