Suppr超能文献

单细胞转录组学数据中恶性细胞的识别。

Identification of malignant cells in single-cell transcriptomics data.

作者信息

Andreatta Massimo, Garnica Josep, Carmona Santiago Javier

机构信息

Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland.

Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.

出版信息

Commun Biol. 2025 Aug 22;8(1):1264. doi: 10.1038/s42003-025-08695-4.

Abstract

Single-cell transcriptomics has significantly advanced our ability to uncover the cellular heterogeneity of tumors. A key challenge in single-cell transcriptomics is identifying cancer cells and, in particular, distinguishing them from non-malignant cells of the same cell lineage. Focusing on features that can be measured by single-cell transcriptomics, this review explores the molecular aberrations of cancer cells and their observable readouts at the RNA level. Identification of bona fide cancer cells typically relies on three main features, alone or in combination: i) expression of cell-of-origin marker genes; ii) inter-patient tumor heterogeneity; iii) inferred copy-number alterations. Depending on the cancer type, however, alternative or additional features may be necessary for accurate classification, such as single-nucleotide mutations, gene fusions, increased cell proliferation, and altered activation of signaling pathways. We summarize computational approaches commonly applied in single-cell analysis of tumoral samples, as well as less explored features that may aid the identification of malignant cells.

摘要

单细胞转录组学极大地提升了我们揭示肿瘤细胞异质性的能力。单细胞转录组学面临的一个关键挑战是识别癌细胞,尤其是将它们与同一细胞谱系的非恶性细胞区分开来。本综述聚焦于可通过单细胞转录组学测量的特征,探讨了癌细胞的分子畸变及其在RNA水平上可观测到的结果。真正癌细胞的识别通常单独或联合依赖于三个主要特征:i)起源细胞标记基因的表达;ii)患者间肿瘤异质性;iii)推断的拷贝数改变。然而,根据癌症类型的不同,可能需要其他特征或额外特征来进行准确分类,例如单核苷酸突变、基因融合、细胞增殖增加以及信号通路激活改变。我们总结了肿瘤样本单细胞分析中常用的计算方法,以及可能有助于识别恶性细胞但较少被探索的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验