Suppr超能文献

一种利用胸部X光影像的肺结节智能诊断模型及其在社区肺癌筛查中的应用。

An intelligent diagnostic model for pulmonary nodules utilizing chest radiographic imagery and its application in community-based lung cancer screening.

作者信息

Li Junxian, Liu Ya, Zhang Liwen, Xing Yuchen, Lyu Zhangyan, Huang Yubei, Zhang Pengyu, Ye Zhaoxiang, Wang Meng, Song Fengju

机构信息

Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.

Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.

出版信息

Br J Cancer. 2025 Aug 22. doi: 10.1038/s41416-025-03147-6.

Abstract

BACKGROUND

Lung cancer is a health threat, particularly in regions where advanced screening methods like LDCT are limited. In China, chest X-rays (CXRs) are the primary tool for early detection. Integrating AI can enhance CXR diagnostic accuracy, addressing current challenges in early lung cancer detection.

METHODS

We collected 4079 CXRs from 2518 individuals at TMUCIH. These were divided into a training set (1762 patients, 2965 images) and a validation set (756 patients, 1114 images). A deep learning (DL) model, based on the CXR-RANet architecture, was developed and validated using two external cohorts: 24,697 individuals (88,562 images) from the PLCO dataset and 4848 individuals from the ChestDR dataset. The model's performance was compared with mainstream DL algorithms and traditional machine learning (ML) model in feature extraction and classification.

RESULTS

In the TMUCIH dataset, 47.8% of patients had positive CXR results, compared to 3.9% in PLCO and 13.7% in ChestDR. The CXR-RANet model achieved an AUC of 0.933 in the internal validation set and 0.818 in the ChestDR dataset. In the PLCO dataset, it predicted lung cancer occurrence with AUCs of 0.902, 0.897, and 0.793 for 3, 5, and 10 years, respectively. The model outperformed mainstream DL algorithms in feature extraction and most ML algorithms in classification.

CONCLUSION

The CXR-RANet presents a robust, scalable tool for diagnosing pulmonary nodules and lung cancer, enhancing the capabilities of community physicians in early detection and management, independent of expert experience. Its superior performance in feature extraction and classification underscores its value in lung cancer screening.

摘要

背景

肺癌对健康构成威胁,在低剂量螺旋CT(LDCT)等先进筛查方法受限的地区尤其如此。在中国,胸部X光片(CXR)是早期检测的主要工具。整合人工智能可以提高CXR的诊断准确性,应对当前早期肺癌检测中的挑战。

方法

我们从台大医院国际医疗中心(TMUCIH)的2518名个体中收集了4079张CXR。这些被分为训练集(1762名患者,2965张图像)和验证集(756名患者,1114张图像)。基于CXR-RANet架构开发了一个深度学习(DL)模型,并使用两个外部队列进行验证:来自前列腺、肺癌、结直肠癌和卵巢癌筛查试验(PLCO)数据集的24697名个体(88562张图像)以及来自胸部疾病数字影像数据库(ChestDR)的4848名个体。在特征提取和分类方面,将该模型的性能与主流DL算法和传统机器学习(ML)模型进行了比较。

结果

在TMUCIH数据集中,47.8%的患者CXR结果呈阳性,而在PLCO中为3.9%,在ChestDR中为13.7%。CXR-RANet模型在内部验证集中的曲线下面积(AUC)为0.933,在ChestDR数据集中为0.818。在PLCO数据集中,它分别在3年、5年和10年预测肺癌发生的AUC为0.902、0.897和0.793。该模型在特征提取方面优于主流DL算法,在分类方面优于大多数ML算法。

结论

CXR-RANet为诊断肺结节和肺癌提供了一个强大、可扩展的工具,增强了社区医生在早期检测和管理方面的能力,且不依赖专家经验。其在特征提取和分类方面的卓越性能凸显了其在肺癌筛查中的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验