Pacesa Martin, Nickel Lennart, Schellhaas Christian, Schmidt Joseph, Pyatova Ekaterina, Kissling Lucas, Barendse Patrick, Choudhury Jagrity, Kapoor Srajan, Alcaraz-Serna Ana, Cho Yehlin, Ghamary Kourosh H, Vinué Laura, Yachnin Brahm J, Wollacott Andrew M, Buckley Stephen, Westphal Adrie H, Lindhoud Simon, Georgeon Sandrine, Goverde Casper A, Hatzopoulos Georgios N, Gönczy Pierre, Muller Yannick D, Schwank Gerald, Swarts Daan C, Vecchio Alex J, Schneider Bernard L, Ovchinnikov Sergey, Correia Bruno E
Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09429-6.
Protein-protein interactions are at the core of all key biological processes. However, the complexity of the structural features that determine protein-protein interactions makes their design challenging. Here we present BindCraft, an open-source and automated pipeline for de novo protein binder design with experimental success rates of 10-100%. BindCraft leverages the weights of AlphaFold2 (ref. ) to generate binders with nanomolar affinity without the need for high-throughput screening or experimental optimization, even in the absence of known binding sites. We successfully designed binders against a diverse set of challenging targets, including cell-surface receptors, common allergens, de novo designed proteins and multi-domain nucleases, such as CRISPR-Cas9. We showcase the functional and therapeutic potential of designed binders by reducing IgE binding to birch allergen in patient-derived samples, modulating Cas9 gene editing activity and reducing the cytotoxicity of a foodborne bacterial enterotoxin. Last, we use cell-surface-receptor-specific binders to redirect adeno-associated virus capsids for targeted gene delivery. This work represents a significant advancement towards a 'one design-one binder' approach in computational design, with immense potential in therapeutics, diagnostics and biotechnology.
蛋白质-蛋白质相互作用是所有关键生物过程的核心。然而,决定蛋白质-蛋白质相互作用的结构特征的复杂性使得其设计具有挑战性。在此,我们展示了BindCraft,这是一种用于从头设计蛋白质结合剂的开源自动化流程,实验成功率为10%-100%。BindCraft利用AlphaFold2(参考文献)的权重来生成具有纳摩尔亲和力的结合剂,即使在没有已知结合位点的情况下,也无需高通量筛选或实验优化。我们成功地针对多种具有挑战性的靶点设计了结合剂,包括细胞表面受体、常见过敏原、从头设计的蛋白质和多结构域核酸酶,如CRISPR-Cas9。我们通过减少患者来源样本中IgE与桦树过敏原的结合、调节Cas9基因编辑活性以及降低食源性细菌肠毒素的细胞毒性,展示了设计的结合剂的功能和治疗潜力。最后,我们使用细胞表面受体特异性结合剂来重新引导腺相关病毒衣壳进行靶向基因递送。这项工作代表了计算设计中“一个设计-一个结合剂”方法的重大进展,在治疗、诊断和生物技术方面具有巨大潜力。