Suppr超能文献

大脑对表观遗传年龄加速的遗传影响:一项大规模遗传相关性研究的证据

Genetic influence of the brain on epigenetic age acceleration: evidence of a large-scale genetic correlation study.

作者信息

Li Chengcheng, Tang Jiaze, Cui Junshuan, Long Niya, Cen Wu, Wu Qibo, Yang Ming, Chu Liangzhao, Zhou Xingwang

机构信息

Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.

出版信息

Biogerontology. 2025 Aug 28;26(5):174. doi: 10.1007/s10522-025-10314-y.

Abstract

The relationship between the brain and aging remains unclear. Our objective is to explore the causal connections between brain structure,gene expression, and traits associated with aging. Mendelian randomization(MR) analysis was conducted to explore the associations between brain structures and aging-related traits including GrimAge acceleration(GrimAA), PhenoAge acceleration (PhenoAA), HannumAge acceleration(HannumAA), HorvathAge acceleration(HorvathAA), and leukocyte telomere length(LTL). The Linkage Disequilibrium Score Regression(LDSC) method was employed to identify the shared genetic etiology between brain structures and aging. The Summary Data-based Mendelian Randomization(SMR) was utilized to investigate which brain genes have a causal influence on aging. We also examined the expression of the 8 genes derived from the SMR analysis across different cell types in post-mortem human brain specimens. The phenotypes potentially linked to genetics, as indicated by the LDSC outcomes, are as follows:148 phenotypes with GrimAA,150 phenotypes with HannumAA, 160 phenotypes with HorvathAA, 160 phenotypes with PhenoAA,and 110 phenotypes with LTL. Concerning the causal link between brain structures and aging-related traits, 7 brain structures consistently demonstrated a causative effect on GrimAA, while 29 brain structures exerted a causal influence on PhenoAA.Additionally, 7 BIDs revealed a causal relationship with HannumAA. There are 10 and 14 brain structures have a causative effect on HorvathAA and LTL, respectively. SMR revealed that 8 genes(CCDC144B, SHMT1, FAM106A, FAIM, CTD-2303H24.2, EBAG9P1, USP32P2 and OGFOD3) expression in different brain regions affected aging. These genes exhibit different expression patterns in various cells. Our results are in line with the possibility of a causal connection between aging and brain structure.

摘要

大脑与衰老之间的关系仍不明确。我们的目标是探索脑结构、基因表达与衰老相关特征之间的因果联系。进行了孟德尔随机化(MR)分析,以探究脑结构与衰老相关特征之间的关联,这些特征包括GrimAge加速(GrimAA)、PhenoAge加速(PhenoAA)、HannumAge加速(HannumAA)、HorvathAge加速(HorvathAA)以及白细胞端粒长度(LTL)。采用连锁不平衡评分回归(LDSC)方法来识别脑结构与衰老之间共享的遗传病因。基于汇总数据的孟德尔随机化(SMR)被用于研究哪些脑基因对衰老有因果影响。我们还在死后人类脑标本中检测了来自SMR分析的8个基因在不同细胞类型中的表达。LDSC结果表明,可能与遗传学相关的表型如下:与GrimAA相关的148个表型、与HannumAA相关的150个表型、与HorvathAA相关的160个表型、与PhenoAA相关的160个表型以及与LTL相关的110个表型。关于脑结构与衰老相关特征之间的因果联系,7个脑结构始终对GrimAA显示出因果效应,而29个脑结构对PhenoAA有因果影响。此外,7个脑影像数据集(BIDs)显示与HannumAA存在因果关系。分别有10个和14个脑结构对HorvathAA和LTL有因果效应。SMR显示,不同脑区中8个基因(CCDC144B、SHMT1、FAM106A、FAIM、CTD - 2303H24.2、EBAG9P1、USP32P2和OGFOD3)的表达影响衰老。这些基因在各种细胞中表现出不同的表达模式。我们的结果符合衰老与脑结构之间存在因果联系的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验