Suppr超能文献

三阴性乳腺癌无病进展预测模型的开发与验证:一项使用彩色多普勒超声和磁共振成像的回顾性研究

Development and validation of a predictive model for disease-free progression in triple-negative breast cancer: A retrospective study using color Doppler ultrasound and magnetic resonance imaging.

作者信息

Li Fan, Yan Huan-Huan, Wei Ben-Kai, Shen Jun

机构信息

Department of Breast Surgery, The First People's Hospital of Lianyungang, The Affiliated Hospital of XuZhou Medical University, Lianyungang, 222000, Jiangsu, China.

Department of General Surgery, The First People's Hospital of Lianyungang, The Affiliated Hospital of XuZhou Medical University, Lianyungang, 222000, Jiangsu, China.

出版信息

Breast. 2025 Aug 22;83:104560. doi: 10.1016/j.breast.2025.104560.

Abstract

OBJECTIVE

Because triple-negative breast cancer has a poor prognosis, adjuvant intensive therapy can effectively improve its prognosis. How to make accurate decisions is lacking of research.This study aimed to develop and validate a model to predict disease-free progression in triple-negative breast cancer (TNBC) using breast color Doppler ultrasound and magnetic resonance imaging (MRI), to facilitate precision in clinical intervention.

METHODS

A retrospective analysis was conducted on data from 380 individuals with TNBC between June 2018 and June 2022. Collected variables included patient demographics, pathological characteristics, and imaging parameters. Predictive models were developed using variable selection through Cox regression analysis, random forest, and eXtreme gradient boosting (XGBoost). Model performance was evaluated using receiver operating characteristic (ROC) curves, area under the ROC curve (AUC) values, calibration curves, and measures such as net reclassification improvement and integrated discrimination improvement (IDI). The optimal model was visualized and subjected to clinical testing.

RESULTS

Comparative analysis revealed that the Cox model outperformed the Rf.cox and XGBoost.cox models. Specifically, at the 48-month time point in the validation set, the XGBoost.cox model demonstrated inferior performance compared to the Cox model. The Cox model was chosen as the optimal model, incorporating seven variables: Age, T-Stage, N-Stage, Ki-67, SE-Score, time-signal intensity curve, and early-phase enhancement. The AUC was 0.937 (0.904-0.971) in the training set and 0.906 (0.855-0.957) in the validation set. Decision curve analysis and clinical impact curve supported the potential utility of the model in guiding clinical interventions.

CONCLUSION

The predictive model for disease-free progression in TNBC, based on imaging parameters from breast color Doppler ultrasound and MRI, demonstrates feasibility. Further studies are recommended to confirm its clinical applicability.

摘要

目的

由于三阴性乳腺癌预后较差,辅助强化治疗可有效改善其预后。目前缺乏关于如何做出准确决策的研究。本研究旨在开发并验证一种使用乳腺彩色多普勒超声和磁共振成像(MRI)预测三阴性乳腺癌(TNBC)无病进展的模型,以提高临床干预的精准性。

方法

对2018年6月至2022年6月期间380例TNBC患者的数据进行回顾性分析。收集的变量包括患者人口统计学信息、病理特征和影像参数。通过Cox回归分析、随机森林和极端梯度提升(XGBoost)进行变量选择,从而开发预测模型。使用受试者工作特征(ROC)曲线、ROC曲线下面积(AUC)值、校准曲线以及净重新分类改善和综合判别改善(IDI)等指标评估模型性能。对最优模型进行可视化并进行临床测试。

结果

比较分析显示,Cox模型优于Rf.cox和XGBoost.cox模型。具体而言,在验证集的48个月时间点,XGBoost.cox模型的表现不如Cox模型。Cox模型被选为最优模型,纳入了七个变量:年龄、T分期、N分期、Ki-67、SE评分、时间-信号强度曲线和早期强化。训练集的AUC为0.937(0.904 - 0.971),验证集的AUC为0.906(0.855 - 0.957)。决策曲线分析和临床影响曲线支持该模型在指导临床干预方面的潜在效用。

结论

基于乳腺彩色多普勒超声和MRI影像参数的TNBC无病进展预测模型具有可行性。建议进一步研究以确认其临床适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验