Suppr超能文献

[小动物多模态生物医学成像的进展]

[Advances in multimodal biomedical imaging of small animals].

作者信息

Deng Zhengyan, Xi Peng, Tang Juan, Ren Qiushi, Yu Yuanjun

机构信息

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, P. R. China.

Chongqing Technical Center for Durg Evaluation & Inspection, Chongqing 401120, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):841-846. doi: 10.7507/1001-5515.202406024.

Abstract

Small animal multimodal biomedical imaging refers to the integration of multiple imaging techniques within the same system or device to acquire comprehensive physiological and pathological information of small animals, such as mice and rats. With the continuous advancement of biomedical research, this cutting-edge technology has attracted extensive attention. Multimodal imaging techniques, based on diverse imaging principles, overcome the limitations of single-modal imaging through information fusion, significantly enhancing the overall system's sensitivity, temporal/spatial resolution, and quantitative accuracy. In the future, the integration of new materials and artificial intelligence will further boost its sensitivity and resolution. Through interdisciplinary innovation, this technology is expected to become the core technology of personalized medicine and expand its applications to drug development, environmental monitoring, and other fields, thus reshaping the landscape of biomedical research and clinical practice. This review summarized the progress on the application and investigation of multimodal biomedical imaging techniques, and discussed its development in the future.

摘要

小动物多模态生物医学成像指的是在同一系统或设备内整合多种成像技术,以获取小鼠和大鼠等小动物的全面生理和病理信息。随着生物医学研究的不断进步,这项前沿技术已引起广泛关注。基于不同成像原理的多模态成像技术,通过信息融合克服了单模态成像的局限性,显著提高了整个系统的灵敏度、时空分辨率和定量准确性。未来,新材料与人工智能的融合将进一步提升其灵敏度和分辨率。通过跨学科创新,这项技术有望成为个性化医疗的核心技术,并将其应用扩展到药物研发、环境监测等领域,从而重塑生物医学研究和临床实践的格局。本文综述了多模态生物医学成像技术的应用与研究进展,并探讨了其未来发展。

相似文献

1
[Advances in multimodal biomedical imaging of small animals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):841-846. doi: 10.7507/1001-5515.202406024.
3
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.
Acad Radiol. 2025 Feb;32(2):907-915. doi: 10.1016/j.acra.2024.09.049. Epub 2024 Oct 5.
6
PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer.
Cochrane Database Syst Rev. 2014 Nov 13;2014(11):CD009519. doi: 10.1002/14651858.CD009519.pub2.
7
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
9
Metabolic network remodeling and AI-driven precision diagnostics in geriatric Parkinson's disease: Advances in multimodal imaging.
Arch Gerontol Geriatr. 2025 Nov;138:105983. doi: 10.1016/j.archger.2025.105983. Epub 2025 Aug 6.
10
Near-Infrared-II Fluorescent Probes for Analytical Applications: From Detection to Imaging Monitoring.
Acc Chem Res. 2025 Feb 18;58(4):543-554. doi: 10.1021/acs.accounts.4c00671. Epub 2025 Feb 5.

本文引用的文献

1
Deep learning paradigms in lung cancer diagnosis: A methodological review, open challenges, and future directions.
Phys Med. 2025 Mar;131:104914. doi: 10.1016/j.ejmp.2025.104914. Epub 2025 Feb 11.
2
The role of multimodality imaging in diabetic cardiomyopathy: a brief review.
Front Endocrinol (Lausanne). 2024 Dec 23;15:1405031. doi: 10.3389/fendo.2024.1405031. eCollection 2024.
7
Noninvasive Monitoring of Early Cardiac Fibrosis in Diabetic Mice by [Ga]Ga-DOTA-FAPI-04 PET/CT Imaging.
ACS Omega. 2024 Apr 5;9(15):17195-17203. doi: 10.1021/acsomega.3c10061. eCollection 2024 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验