Suppr超能文献

全转录组水平的根源因果推断

Transcriptome-wide root causal inference.

作者信息

Strobl Eric V, Gamazon Eric R

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.

出版信息

PLoS Comput Biol. 2025 Sep 2;21(9):e1013461. doi: 10.1371/journal.pcbi.1013461. eCollection 2025 Sep.

Abstract

Root causal genes correspond to the first gene expression levels perturbed during pathogenesis by genetic or non-genetic factors. Targeting root causal genes has the potential to alleviate disease entirely by eliminating pathology near its onset. No existing algorithm has been designed to discover root causal genes from observational data alone. We therefore propose the Transcriptome-Wide Root Causal Inference (TWRCI) algorithm that identifies root causal genes and their causal graph using a combination of genetic variant and unperturbed bulk RNA sequencing data. TWRCI uses a novel competitive regression procedure to annotate cis and trans-genetic variants to the gene expression levels they directly cause. The algorithm simultaneously determines the sequence in which gene expression changes propagate through the system to pinpoint the underlying causal graph and estimate root causal effects. TWRCI outperforms alternative approaches across a diverse group of metrics by directly targeting root causal genes while accounting for distal relations, linkage disequilibrium, patient heterogeneity and widespread pleiotropy. We demonstrate the algorithm by uncovering the root causal mechanisms of two complex diseases, which we confirm by replication using independent genome-wide summary statistics.

摘要

根源致病基因对应于在发病过程中最早受到遗传或非遗传因素干扰的基因表达水平。靶向根源致病基因有可能通过在疾病发病初期消除病理状况来完全缓解疾病。目前还没有设计出仅从观测数据中发现根源致病基因的算法。因此,我们提出了全转录组根源因果推断(TWRCI)算法,该算法结合遗传变异和未受干扰的大量RNA测序数据来识别根源致病基因及其因果关系图。TWRCI使用一种新颖的竞争回归程序,将顺式和反式遗传变异注释到它们直接导致的基因表达水平上。该算法同时确定基因表达变化在系统中传播的顺序,以查明潜在的因果关系图并估计根源因果效应。TWRCI通过直接靶向根源致病基因,同时考虑远端关系、连锁不平衡、患者异质性和广泛的多效性,在各种指标上优于其他方法。我们通过揭示两种复杂疾病的根源致病机制来展示该算法,并使用独立的全基因组汇总统计数据进行复制验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ed/12413095/a7c895bc9185/pcbi.1013461.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验