Deng Wankun, Zhao Zhongming
Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
bioRxiv. 2025 Aug 21:2025.08.15.670239. doi: 10.1101/2025.08.15.670239.
Single-nucleus RNA sequencing (snRNA-seq) generates single cell data from nuclei. It provides valuable compatibility with frozen or difficult-to-dissociate tissues while avoiding stress responses in fresh samples. However, cytoplasmic depletion inherently limits quantification of cytoplasm-enriched genes. Here, we present CytoRescue, a novel generative AI model designed to recover attenuated cytoplasmic signals in snRNA-seq data. Our results demonstrate that CytoRescue effectively restores expression of cytoplasm-enriched genes while preserving underlying gene expression signatures. Taking advantaging of the raw-in-raw-out design, CytoRescue can be easily integrated into the existing pipelines for single-cell sequencing analysis. Notably, CytoRescue successfully recovers EGF signaling pathway components, a critical cell-cell communication pathway in lung cancer, in an independent dataset. CytoRescue addresses a fundamental limitation of snRNA-seq technology, enhancing its utility for comprehensive transcriptomic profiling while maintaining the advantages of single nucleus-based approaches.
单细胞核RNA测序(snRNA-seq)从细胞核中生成单细胞数据。它为冷冻或难以解离的组织提供了宝贵的兼容性,同时避免了新鲜样本中的应激反应。然而,细胞质去除本质上限制了富含细胞质基因的定量。在这里,我们展示了CytoRescue,这是一种新型的生成式人工智能模型,旨在恢复snRNA-seq数据中衰减的细胞质信号。我们的结果表明,CytoRescue有效地恢复了富含细胞质基因的表达,同时保留了潜在的基因表达特征。利用原始输入-原始输出设计,CytoRescue可以很容易地集成到现有的单细胞测序分析流程中。值得注意的是,CytoRescue在一个独立的数据集中成功恢复了表皮生长因子(EGF)信号通路成分,这是肺癌中一个关键的细胞间通讯通路。CytoRescue解决了snRNA-seq技术的一个基本限制,增强了其在全面转录组分析中的效用,同时保持了基于单细胞核方法的优势。