Suppr超能文献

对T细胞亚群、激活状态和功能背后的程序进行可重复的单细胞注释。

Reproducible single-cell annotation of programs underlying T cell subsets, activation states and functions.

作者信息

Kotliar Dylan, Curtis Michelle, Agnew Ryan, Weinand Kathryn, Nathan Aparna, Baglaenko Yuriy, Slowikowski Kamil, Zhao Yu, Sabeti Pardis C, Rao Deepak A, Raychaudhuri Soumya

机构信息

Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Methods. 2025 Sep 3. doi: 10.1038/s41592-025-02793-1.

Abstract

T cells recognize antigens and induce specialized gene expression programs (GEPs), enabling functions like proliferation, cytotoxicity and cytokine production. Traditionally, different T cell classes are thought to exhibit mutually exclusive responses, including T1, T2 and T17 programs. However, single-cell RNA sequencing has revealed a continuum of T cell states without clearly distinct subsets, necessitating new analytical frameworks. Here, we introduce T-CellAnnoTator (TCAT), a pipeline that improves T cell characterization by simultaneously quantifying predefined GEPs capturing activation states and cellular subsets. Analyzing 1,700,000 T cells from 700 individuals spanning 38 tissues and five disease contexts, we identify 46 reproducible GEPs reflecting core T cell functions including proliferation, cytotoxicity, exhaustion and effector states. We experimentally demonstrate new activation programs and apply TCAT to characterize activation GEPs that predict immune checkpoint inhibitor response across multiple tumor types. Our software package starCAT generalizes this framework, enabling reproducible annotation in other cell types and tissues.

摘要

T细胞识别抗原并诱导特定的基因表达程序(GEP),从而实现增殖、细胞毒性和细胞因子产生等功能。传统上,不同类型的T细胞被认为表现出相互排斥的反应,包括T1、T2和T17程序。然而,单细胞RNA测序揭示了一个连续的T细胞状态,没有明显不同的亚群,这就需要新的分析框架。在这里,我们介绍了T-CellAnnoTator(TCAT),这是一种通过同时量化捕获激活状态和细胞亚群的预定义GEP来改进T细胞表征的流程。通过分析来自700名个体、跨越38个组织和五种疾病背景的170万个T细胞,我们确定了46个可重复的GEP,反映了包括增殖、细胞毒性、耗竭和效应器状态在内的核心T细胞功能。我们通过实验证明了新的激活程序,并应用TCAT来表征预测多种肿瘤类型免疫检查点抑制剂反应的激活GEP。我们的软件包starCAT推广了这个框架,能够在其他细胞类型和组织中进行可重复的注释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验