Xue Si-Jia, Zhou Min, Guo Jing, Zhao Fang-Yuan, Jiang Wen-Wen, Huang Xiao, Zhang Jin-Yong
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
Qingdao Animal Husbandry and Veterinary Institute, Qingdao, Shandong Province 266000, China.
Int J Food Microbiol. 2025 Dec 2;443:111423. doi: 10.1016/j.ijfoodmicro.2025.111423. Epub 2025 Sep 1.
Honey's unique physicochemical properties create a restrictive environment for most microorganisms, yet support the specialized osmotolerant yeasts with significant ecological roles and biotechnological potential. In this study, we employed an integrated culture-dependent and culture-independent approach to systematically characterize yeast communities in sympatric monofloral chaste (Vitex agnus-castus) honeys from Apis cerana and Apis mellifera colonies in Qingdao, East China. Results consistently showed that A. mellifera honey harbored significantly higher yeast diversity than A. cerana honey across both methods. Culture-independent profiling identified Zygosaccharomyces as the predominant genus in both honey types, while A. mellifera honey contained a notably higher proportion of unclassified fungal taxa. Through cultivation, 13 distinct yeast species and one filamentous fungus were isolated from the honey samples, with several species exclusively associated with either A. cerana or A. mellifera honey. Importantly, despite the shared geographic and floral source, both approaches confirmed a clear bee species-specific yeast community structure, highlighting that host identity drives microbial differentiation. Physiological assays further demonstrated that all isolated yeasts exhibited exceptional tolerance to high osmotic stress and acidic pH-key traits adaptive to the extreme environment of honey. These adaptive characteristics, coupled with diverse metabolic capabilities, highlight the substantial biotechnological potential of these honey-associated yeasts, with promising applications in fermentation, bioactive metabolite synthesis, and probiotics. This study enhances our understanding of host-specific microbial associations in honey ecosystems and positions honey as a valuable reservoir of functionally diverse yeasts for biotechnological exploration.
蜂蜜独特的理化性质为大多数微生物创造了一个受限的环境,但却支持了具有重要生态作用和生物技术潜力的特殊耐渗透压酵母。在本研究中,我们采用了一种依赖培养和不依赖培养相结合的方法,系统地描述了来自中国东部青岛中华蜜蜂和西方蜜蜂蜂群的同域单花贞洁(蔓荆子)蜂蜜中的酵母群落。结果一致表明,在两种方法中,西方蜜蜂蜂蜜中的酵母多样性均显著高于中华蜜蜂蜂蜜。不依赖培养的分析方法确定了接合酵母属是两种蜂蜜类型中的主要属,而西方蜜蜂蜂蜜中未分类真菌类群的比例明显更高。通过培养,从蜂蜜样本中分离出了13种不同的酵母物种和1种丝状真菌,其中几种物种仅与中华蜜蜂或西方蜜蜂蜂蜜相关。重要的是,尽管地理和花蜜来源相同,但两种方法都证实了明显的蜜蜂物种特异性酵母群落结构,突出表明宿主身份驱动微生物分化。生理分析进一步表明,所有分离出的酵母都表现出对高渗透压胁迫和酸性pH的特殊耐受性——这是适应蜂蜜极端环境的关键特征。这些适应性特征,再加上多样的代谢能力,突出了这些与蜂蜜相关的酵母巨大的生物技术潜力,在发酵、生物活性代谢物合成和益生菌方面具有广阔的应用前景。这项研究增进了我们对蜂蜜生态系统中宿主特异性微生物关联的理解,并将蜂蜜定位为一个功能多样的酵母的宝贵宝库,用于生物技术探索。