Gabbutt Calum, Duran-Ferrer Martí, Grant Heather E, Mallo Diego, Nadeu Ferran, Househam Jacob, Villamor Neus, Müller Madlen, Heath Simon, Raineri Emanuele, Krali Olga, Nordlund Jessica, Zenz Thorsten, Gut Ivo G, Campo Elias, Lopez-Guillermo Armando, Fitzgibbon Jude, Barnes Chris P, Shibata Darryl, Martin-Subero José I, Graham Trevor A
Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
I-X Centre for AI in Science, Imperial College London, London, UK.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09374-4.
Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types. We measure that subclonal selection occurs only infrequently within bulk samples and detect occasional examples of multiple independent primary tumours. Clinically, we observe faster initial tumour growth in more aggressive disease subtypes, and that evolutionary histories are strong independent prognostic factors in two series of chronic lymphocytic leukaemia. Using EVOFLUx for phylogenetic analyses of aggressive Richter-transformed chronic lymphocytic leukaemia samples detected that the seed of the transformed clone existed decades before presentation. Orthogonal verification of EVOFLUx inferences is provided using additional genetic data, including long-read nanopore sequencing, and clinical variables. Collectively, we show how widely available, low-cost bulk DNA methylation data precisely measure cancer evolutionary dynamics, and provides new insights into cancer biology and clinical behaviour.
癌症的发展和对治疗的反应是进化过程,但在具有临床意义的规模上描述进化动态仍然具有挑战性。在此,我们开发了一种名为EVOFLUx的新方法,该方法基于随时间波动的天然DNA甲基化条形码,仅使用肿瘤整体甲基化谱作为输入来定量推断进化动态。我们将EVOFLUx应用于1976个特征明确的淋巴癌样本,这些样本涵盖了广泛的疾病类型,并表明初始肿瘤生长速率、恶性肿瘤年龄和表观突变率在不同疾病类型之间相差几个数量级。我们测量发现,亚克隆选择在整体样本中很少发生,并检测到多个独立原发性肿瘤的偶发实例。在临床上,我们观察到在侵袭性更强的疾病亚型中,初始肿瘤生长更快,并且在两个慢性淋巴细胞白血病系列中,进化史是强大的独立预后因素。使用EVOFLUx对侵袭性里氏转化慢性淋巴细胞白血病样本进行系统发育分析发现,转化克隆的种子在出现前几十年就已存在。使用包括长读长纳米孔测序在内的其他遗传数据和临床变量对EVOFLUx推断进行了正交验证。总体而言,我们展示了广泛可用的低成本肿瘤整体DNA甲基化数据如何精确测量癌症进化动态,并为癌症生物学和临床行为提供了新的见解。