Wansch Katharina, Pelzer Uwe, Schneider François, Dölvers Florian, Kühn Anna, Dragomir Mihnea P, Ihlow Jana, Hilfenhaus Georg, Vecchione Loredana, Felsenstein Matthäus, Ma Dou, Lerchbaumer Markus, Jürgensen Christian, Bahra Marcus, Granada Adrian E, Duwe Gregor, Stintzing Sebastian, Keilholz Ulrich, Neumann Christopher C M
Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
Department of Pathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
Cancer Cell Int. 2025 Sep 13;25(1):321. doi: 10.1186/s12935-025-03969-7.
Patient-Derived Organoids (PDOs) represent a promising technology for therapy prediction in pancreatic cancer, with the potential of enhancing treatment outcomes and allowing more effective, personalized treatment choices. However, classification approaches into sensitive and resistant models remain very variable and are based on single-agent testing only, neglecting interactive effects of multi-drug combinations. Here, we established 13 PDOs and performed both single-agent and multi-drug testing. By comparing different clustering approaches of drug-response metrics and establishing a new classification approach based on pharmacokinetic modelling, we were able to evaluate which score best predicts the clinical response of patients. Our newly developed score considered the Area Under The Curve (AUC) of cell viability curves and reached a prediction accuracy of 85%. Our data supports previous findings for PDOs to constitute an effective platform for translational drug testing. Furthermore, our results suggest that the AUC is a more accurate drug-response metric than the half maximal inhibitory concentration (IC), and that multi-drug testing yields a higher accuracy than single-agent testing. The methodology and outcomes presented in this study are of critical relevance for future PDO-based translational trials as they allow a new physiology-based approach towards multi-drug testing and classification of organoid response, which improves PDO prediction accuracy.
患者来源的类器官(PDO)是一种很有前景的胰腺癌治疗预测技术,具有改善治疗效果和实现更有效、个性化治疗选择的潜力。然而,将其分为敏感和耐药模型的分类方法仍然非常多样,且仅基于单药测试,忽略了多药联合的交互作用。在此,我们建立了13个PDO,并进行了单药和多药测试。通过比较药物反应指标的不同聚类方法,并基于药代动力学模型建立一种新的分类方法,我们能够评估哪种评分最能预测患者的临床反应。我们新开发的评分考虑了细胞活力曲线的曲线下面积(AUC),预测准确率达到85%。我们的数据支持了之前关于PDO构成转化药物测试有效平台的研究结果。此外,我们的结果表明,AUC是比半数最大抑制浓度(IC)更准确的药物反应指标,且多药测试比单药测试产生更高的准确率。本研究中提出的方法和结果对于未来基于PDO的转化试验至关重要,因为它们允许采用一种基于新生理学的方法进行多药测试和类器官反应分类,从而提高PDO预测准确率。