Suppr超能文献

血红素和氧化还原稳态改变是迟发性阿尔茨海默病的基础。

Altered Heme and Redox Homeostasis Underpin Late-onset Alzheimer's Disease.

作者信息

Soladogun Adedamola Saidi, Vidal Chantal, Castro Maria Del Carmen Chacon, Du Heng, Zhang Li

机构信息

Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.

Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.

出版信息

Int J Biol Sci. 2025 Aug 22;21(12):5393-5410. doi: 10.7150/ijbs.116204. eCollection 2025.

Abstract

Early-onset Alzheimer's disease (EOAD) is associated with highly penetrant mutations in genes such as PSEN2, whereas the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD) is the APOE4 allele. Despite intense research efforts, how neuronal dysfunction is initiated in LOAD cases and how the initiating events for EOAD and LOAD differ remain to be clarified. Using biochemical measurements of energy metabolism, heme and redox homeostasis, in combination with RNA-Sequencing analysis, we characterized biochemical and transcriptome differences in neurons differentiated from human EOAD and LOAD iPSC-derived neural stem cells, relative to their respective control neurons. Strikingly, we found that LOAD neurons, not EOAD neurons, are defective in heme and redox homeostasis. The levels of multiple proteins and enzymes involved in heme synthesis, degradation, and oxidative phosphorylation are preferentially decreased in LOAD neurons, not EOAD neurons. Likewise, heme transport is decreased in LOAD neurons. ROS generation is strongly increased in LOAD neurons, not EOAD neurons. Further, many genes involved in heme and redox homeostasis, as well as cellular energy generation, are downregulated in LOAD neurons, not EOAD neurons. Together, these results strongly suggest that altered heme and redox homeostasis in LOAD neurons underlie the initiation of neurological deficits.

摘要

早发性阿尔茨海默病(EOAD)与PSEN2等基因的高外显率突变相关,而晚发性阿尔茨海默病(LOAD)最强的遗传风险因素是APOE4等位基因。尽管进行了大量研究,但LOAD病例中神经元功能障碍是如何引发的,以及EOAD和LOAD的起始事件有何不同仍有待阐明。通过对能量代谢、血红素和氧化还原稳态进行生化测量,并结合RNA测序分析,我们对源自人类EOAD和LOAD诱导多能干细胞(iPSC)的神经干细胞分化而来的神经元,相对于其各自的对照神经元,进行了生化和转录组差异分析。令人惊讶的是,我们发现LOAD神经元而非EOAD神经元在血红素和氧化还原稳态方面存在缺陷。参与血红素合成、降解和氧化磷酸化的多种蛋白质和酶的水平在LOAD神经元中优先降低,而在EOAD神经元中则不然。同样,LOAD神经元中的血红素转运减少。LOAD神经元中的活性氧(ROS)生成大幅增加,而EOAD神经元中则不然。此外,许多参与血红素和氧化还原稳态以及细胞能量生成的基因在LOAD神经元中下调,而在EOAD神经元中则不然。总之,这些结果有力地表明,LOAD神经元中血红素和氧化还原稳态的改变是神经功能缺损起始的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd03/12435994/1b838c1d64ba/ijbsv21p5393g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验