Gagnon Y, Lacoste L, Champagne N, Lapointe J
Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Ste-Foy, Québec G1K 7P4, Canada.
J Biol Chem. 1996 Jun 21;271(25):14856-63. doi: 10.1074/jbc.271.25.14856.
The expression of the Rhizobium meliloti glutamyl-tRNA synthetase gene in Escherichia coli under the control of a trc promoter results in a toxic effect upon isopropyl-beta-D-thiogalactopyranoside induction, which is probably caused by a misacylation activity. To further investigate this unexpected result, we looked at the pathway of Gln-tRNAGln formation in R. meliloti. No glutaminyl-tRNA synthetase activity has been found in R. meliloti crude extract, but we detected a specific aminotransferase activity that changes Glu-tRNAGln to Gln-tRNAGln. Our results show that R. meliloti, a member of the alpha-subdivision of the purple bacteria, is the first Gram-negative bacteria reported to use a transamidation pathway for Gln-tRNAGln synthesis. A phylogenetic analysis of the contemporary glutamyl-tRNA synthetase and glutaminyl-tRNA synthetase amino acid sequences reveals that a close evolutionary relationship exists between R. meliloti and yeast mitochondrial glutamyl-tRNA synthetases, which is consistent with an origin of mitochondria in the alpha-subdivision of Gram-negative purple bacteria. A 256-amino acid open reading frame closely related to bacterial glutamyl-tRNA synthetases, which probably originates from a glutamyl-tRNA synthetase gene duplication, was found in the 4-min region of the E. coli chromosome. We suggest that this open reading frame is a relic of an ancient transamidation pathway that occurred in an E. coli ancestor before the horizontal transfer of a eukaryotic glutaminyl-tRNA synthetase (Lamour, V., Quevillon, S., Diriong, S., N'Guyen, V. C., Lipinski, M., and Mirande, M.(1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8670-8674) and that it favored its stable acquisition. From these observations, a revisited model for the evolution of the contemporary glutamyl-tRNA synthetases and glutaminyl-tRNA synthetases that differs from the generally accepted model for the evolution of aminoacyl-tRNA synthetases is proposed.
在trc启动子控制下,苜蓿中华根瘤菌谷氨酰胺-tRNA合成酶基因在大肠杆菌中的表达,在异丙基-β-D-硫代半乳糖苷诱导时会产生毒性作用,这可能是由错误的氨酰化活性引起的。为了进一步研究这一意外结果,我们研究了苜蓿中华根瘤菌中Gln-tRNAGln的形成途径。在苜蓿中华根瘤菌的粗提取物中未发现谷氨酰胺-tRNA合成酶活性,但我们检测到一种特定的转氨酶活性,它可将Glu-tRNAGln转变为Gln-tRNAGln。我们的结果表明,苜蓿中华根瘤菌作为紫色细菌α-亚群的一员,是首个被报道利用转氨途径合成Gln-tRNAGln的革兰氏阴性细菌。对当代谷氨酰胺-tRNA合成酶和谷氨酰胺-tRNA合成酶氨基酸序列的系统发育分析表明,苜蓿中华根瘤菌与酵母线粒体谷氨酰胺-tRNA合成酶之间存在密切的进化关系,这与革兰氏阴性紫色细菌α-亚群中线粒体的起源一致。在大肠杆菌染色体的4分钟区域发现了一个与细菌谷氨酰胺-tRNA合成酶密切相关的256个氨基酸的开放阅读框,它可能起源于谷氨酰胺-tRNA合成酶基因的复制。我们认为这个开放阅读框是大肠杆菌祖先在真核谷氨酰胺-tRNA合成酶水平转移(拉穆尔,V.,奎维隆,S.,迪里翁,S.,阮,V.C.,利平斯基,M.,和米兰德,M.(1994年)美国国家科学院院刊91,8670 - 8674)之前发生的古老转氨途径的遗迹,并且它有利于该酶的稳定获得。基于这些观察结果,提出了一个与普遍接受的氨酰-tRNA合成酶进化模型不同的当代谷氨酰胺-tRNA合成酶和谷氨酰胺-tRNA合成酶进化的修正模型。