Merrill A H, Schmelz E M, Dillehay D L, Spiegel S, Shayman J A, Schroeder J J, Riley R T, Voss K A, Wang E
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA.
Toxicol Appl Pharmacol. 1997 Jan;142(1):208-25. doi: 10.1006/taap.1996.8029.
The "sphingosin" backbone of sphingolipids was so named by J. L. W. Thudichum in 1884 for its enigmatic ("Sphinx-like") properties. Although still an elusive class of lipids, research on the involvement of sphingolipids in the signal transduction pathways that mediate cell growth, differentiation, multiple cell functions, and cell death has been rapidly expanding our understanding of these compounds. In addition to the newly discovered role of ceramide as an intracellular second messenger for tumor necrosis factor-alpha, IL-1beta, and other cytokines, sphingosine, sphingosine-1-phosphate, and other sphingolipid metabolites have recently been demonstrated to modulate cellular calcium homeostasis and cell proliferation. Perturbation of sphingolipid metabolism using synthetic and naturally occurring inhibitors of key enzymes of the biosynthetic pathways is aiding the characterization of these processes; for examples, inhibition of cerebroside synthase has indicated a role for ceramide in cellular stress responses including heat shock, and inhibition of ceramide synthase (by fumonisins) has revealed the role of disruption of sphingolipid metabolism in several animal diseases. Fumonisins are currently the focus of a FDA long-term tumor study. This review summarizes recent research on (i) the role of sphingolipids as important components of the diet, (ii) the role of sphingoid base metabolites and the ceramide cycle in expression of genes regulating cell growth, differentiation, and apoptosis, (iii) the use of cerebroside synthase inhibitors as tools for understanding the role of sphingolipids as mediators of cell cycle progression, renal disease, and stress responses, and (iv) the involvement of disrupted sphingolipid metabolism in animal disease and cellular deregulation associated with exposure to inhibitors of ceramide synthase and serine palmitoyltransferase, key enzymes in de novo sphingolipid biosynthesis. These findings illustrate how an understanding of the function of sphingolipids can help solve questions in toxicology and this is undoubtedly only the beginning of this story.
鞘脂的“鞘氨醇”骨架是由J. L. W. 图迪雄于1884年因其神秘(“斯芬克斯般的”)特性而命名的。尽管鞘脂仍是一类难以捉摸的脂质,但关于鞘脂参与介导细胞生长、分化、多种细胞功能和细胞死亡的信号转导途径的研究,正在迅速拓展我们对这些化合物的认识。除了新发现的神经酰胺作为肿瘤坏死因子-α、白细胞介素-1β和其他细胞因子的细胞内第二信使的作用外,鞘氨醇、鞘氨醇-1-磷酸和其他鞘脂代谢产物最近已被证明可调节细胞钙稳态和细胞增殖。使用生物合成途径关键酶的合成抑制剂和天然抑制剂对鞘脂代谢进行干扰,有助于对这些过程进行表征;例如,抑制脑苷脂合酶已表明神经酰胺在包括热休克在内的细胞应激反应中起作用,而抑制神经酰胺合酶(由伏马菌素引起)已揭示鞘脂代谢紊乱在几种动物疾病中的作用。伏马菌素目前是美国食品药品监督管理局一项长期肿瘤研究的重点。本综述总结了近期关于(i)鞘脂作为饮食重要成分的作用,(ii)鞘氨醇碱代谢产物和神经酰胺循环在调节细胞生长、分化和凋亡的基因表达中的作用,(iii)使用脑苷脂合酶抑制剂作为工具来理解鞘脂作为细胞周期进程、肾脏疾病和应激反应介质的作用,以及(iv)鞘脂代谢紊乱与动物疾病以及与接触神经酰胺合酶和丝氨酸棕榈酰转移酶(鞘脂从头生物合成中的关键酶)抑制剂相关的细胞失调的关系。这些发现说明了对鞘脂功能的理解如何有助于解决毒理学问题,而这无疑仅仅是这个故事的开端。