Suppr超能文献

维生素D激素及其核受体:分子作用与疾病状态。

The vitamin D hormone and its nuclear receptor: molecular actions and disease states.

作者信息

Haussler M R, Haussler C A, Jurutka P W, Thompson P D, Hsieh J C, Remus L S, Selznick S H, Whitfield G K

机构信息

Department of Biochemistry, College of Medicine, University of Arizona, Tucson 85724, USA.

出版信息

J Endocrinol. 1997 Sep;154 Suppl:S57-73.

PMID:9379138
Abstract

Vitamin D plays a major role in bone mineral homeostasis by promoting the transport of calcium and phosphate to ensure that the blood levels of these ions are sufficient for the normal mineralization of type I collagen matrix in the skeleton. In contrast to classic vitamin D-deficiency rickets, a number of vitamin D-resistant rachitic syndromes are caused by acquired and hereditary defects in the metabolic activation of the vitamin to its hormonal form, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), or in the subsequent functions of the hormone in target cells. The actions of 1,25(OH)2D3 are mediated by the nuclear vitamin D receptor (VDR), a phosphoprotein which binds the hormone with-high affinity and regulates the expression of genes via zinc finger-mediated DNA binding and protein-protein interactions. In hereditary hypocalcemic vitamin D-resistant rickets (HVDRR), natural mutations in human VDR that confer patients with tissue insensitivity to 1,25(OH)2D3 are particularly instructive in revealing VDR structure function relationships. These mutations fall into three categories: (i) DNA binding/nuclear localization, (ii) hormone binding and (iii) heterodimerization with retinoid X receptors (RXRs). That all three classes of VDR mutations generate the HVDRR phenotype is consistent with a basic model of the active receptor as a DNA-bound, 1,25(OH)2D3-liganded heterodimer of VDR and RXR. Vitamin D responsive elements (VDREs) consisting of direct hexanucleotide repeats with a spacer of three nucleotides have been identified in the promoter regions of positively controlled genes expressed in bone, such as osteocalcin, osteopontin, beta 3-integrin and vitamin D 24-OHase. The 1,25(OH)2D3 ligand promotes VDR-RXR heterodimerization and specific, high affinity VDRE binding, whereas the ligand for RXR, 9-cis retinoic acid (9-cis RA), is capable of suppressing 1,25(OH)2D3-stimulated transcription by diverting RXR to form homodimers. However, initial 1,25(OH)2D3 liganding of a VDR monomer renders it competent not only to recruit RXR into a heterodimer but also to conformationally silence the ability of its RXR partner to bind 9-cis RA and dissociate the heterodimer. Additional probing of protein-protein interactions has revealed that VDR also binds to basal transcription factor IIB (TFIIB) and, in the presence of 1,25(OH)2D3, an RXR-VDR-TFIIB ternary complex can be created in solution. Moreover, for transcriptional activation by 1,25(OH)2D3, both VDR and RXR require an intact short amphipathic alpha-helix, known as AF-2, positioned at their extreme C-termini. Because the AF-2 domains participate neither in VDR-RXR heterodimerization nor in TFIIB association, it is hypothesized that they contact, in a ligand-dependent fashion, transcriptional coactivators such as those of the steroid receptor coactivator family, constituting yet a third protein-protein interaction for VDR. Therefore, in VDR-mediated transcriptional activation, 1,25(OH)2D3 binding to VDR alters the conformation of the ligand binding domain such that it: (i) engages in strong heterodimerization with RXR to facilitate VDRE binding, (ii) influences the RXR ligand binding domain such that it is resistant to the binding of 9-cis RA but active in recruiting coactivator to its AF-2 and (iii) presents the AF-2 region in VDR for coactivator association. The above events, including bridging by coactivators to the TATA binding protein and associated factors, may position VDR such that it is able to attract TFIIB and the balance of the RNA polymerase II transcription machinery, culminating in repeated transcriptional initiation of VDRE-containing, vitamin D target genes. Such a model would explain the action of 1,25(OH)2D3 to elicit bone remodeling by stimulating osteoblast and osteoclast precursor gene expression, while concomitantly triggering the termination of its hormonal signal by inducing the 24-OHase catabolizing enzyme.

摘要

维生素D通过促进钙和磷的转运在骨矿物质稳态中发挥主要作用,以确保这些离子的血液水平足以使骨骼中的I型胶原基质正常矿化。与经典的维生素D缺乏性佝偻病不同,一些维生素D抵抗性佝偻病综合征是由维生素代谢激活为其激素形式1,25-二羟基维生素D3(1,25(OH)2D3)的后天性和遗传性缺陷,或由该激素在靶细胞中的后续功能缺陷引起的。1,25(OH)2D3的作用由核维生素D受体(VDR)介导,VDR是一种磷蛋白,它以高亲和力结合该激素,并通过锌指介导的DNA结合和蛋白质-蛋白质相互作用来调节基因表达。在遗传性低钙性维生素D抵抗性佝偻病(HVDRR)中,人类VDR的自然突变使患者对1,25(OH)2D3产生组织不敏感性,这对于揭示VDR的结构-功能关系特别有指导意义。这些突变分为三类:(i)DNA结合/核定位,(ii)激素结合,以及(iii)与视黄酸X受体(RXR)的异源二聚化。所有这三类VDR突变都产生HVDRR表型,这与活性受体作为VDR和RXR的DNA结合、1,25(OH)2D3配体化异源二聚体的基本模型一致。在骨中表达的正向调控基因的启动子区域中已鉴定出由具有三个核苷酸间隔的直接六核苷酸重复序列组成的维生素D反应元件(VDRE),如骨钙素、骨桥蛋白、β3整合素和维生素D 24-羟化酶。1,25(OH)2D3配体促进VDR-RXR异源二聚化和特异性、高亲和力的VDRE结合,而RXR的配体9-顺式视黄酸(9-cis RA)能够通过使RXR形成同源二聚体来抑制1,25(OH)2D3刺激的转录。然而,VDR单体的初始1,25(OH)2D3配体化不仅使其能够将RXR招募到异源二聚体中,而且还能在构象上使其RXR伙伴结合9-cis RA并解离异源二聚体的能力沉默。对蛋白质-蛋白质相互作用的进一步研究表明,VDR还与基础转录因子IIB(TFIIB)结合,并且在1,25(OH)2D3存在的情况下,可以在溶液中形成RXR-VDR-TFIIB三元复合物。此外,对于1,25(OH)2D3的转录激活,VDR和RXR都需要位于其极端C末端的完整短两性α-螺旋,称为AF-2。由于AF-2结构域既不参与VDR-RXR异源二聚化也不参与TFIIB结合,因此推测它们以配体依赖性方式与转录共激活因子接触,例如类固醇受体共激活因子家族的那些共激活因子,构成VDR的第三种蛋白质-蛋白质相互作用。因此,在VDR介导的转录激活中,1,25(OH)2D3与VDR的结合改变了配体结合结构域的构象,使其:(i)与RXR进行强烈的异源二聚化以促进VDRE结合,(ii)影响RXR配体结合结构域,使其对9-cis RA的结合具有抗性,但在将共激活因子招募到其AF-2方面具有活性,以及(iii)在VDR中呈现AF-2区域以进行共激活因子结合。上述事件,包括通过共激活因子与TATA结合蛋白和相关因子的桥接,可能使VDR定位,使其能够吸引TFIIB和RNA聚合酶II转录机制的其余部分,最终导致含VDRE的维生素D靶基因的重复转录起始。这样的模型将解释1,25(OH)2D3通过刺激成骨细胞和破骨细胞前体基因表达来引发骨重塑的作用,同时通过诱导24-羟化酶分解代谢酶来触发其激素信号的终止。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验