Mazauric M H, Keith G, Logan D, Kreutzer R, Giegé R, Kern D
UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
Eur J Biochem. 1998 Feb 1;251(3):744-57. doi: 10.1046/j.1432-1327.1998.2510744.x.
The tRNA glycylation system is amongst the most complex aminoacylation systems since neither the oligomeric structure of the enzymes nor the discriminator base in tRNAs are conserved in the phylae. To understand better this structural diversity and its functional consequences, the prokaryotic glycylation system from Thermus thermophilus, an extreme thermophile, was investigated and its structural and functional inter-relations with those of other origins analyzed. Alignments of the protein sequence of the dimeric thermophilic glycyl-tRNA synthetase (Gly-tRNA synthetase) derived from its gene with sequences of other dimeric Gly-tRNA synthetases revealed an atypical character of motif 1 in all these class 2 synthetases. Interestingly, the sequence of the prokaryotic thermophilic enzyme resembles eukaryotic and archaebacterial Gly-tRNA synthetases, which are all dimeric, and diverges drastically from the tetrameric enzymes from other prokaryotes. Cross aminoacylations with tRNAs and synthetases of different origins provided information about functional interrelations between the glycylation systems. Efficient glycylations involving partners from T. thermophilus and Escherichia coli showed conservation of the recognition process in prokaryotes despite strong structural variations of the synthetases. However, Gly-tRNA synthetase from T. thermophilus acylates eukaryotic tRNA(Gly) while the charging ability of the E. coli enzyme is restricted to prokaryotic tRNA(Gly). A similar behaviour is found in eukaryotic systems where the restricted species specificity for tRNA glycylation of mammalian Gly-tRNA synthetase contrasts with the relaxed specificity of the yeast enzyme. The consensus sequence of the tRNAs charged by the various Gly-tRNA synthetases reveals conservation of only G1-C72 in the acceptor arm, C35 and C36 in the anticodon, and the (G10-Y25)-G45 triplet involved in tRNA folding. Conservation of these nucleotides indicates their key role in glycylation and suggests that they were part of the ancestral glycine identity set. These features are discussed in the context of the phylogenic connections between prokaryotes, eukaryotes, and archaebacteria, and of the particular place of T. thermophilus in this phylogeny.
tRNA 甘氨酰化系统是最复杂的氨酰化系统之一,因为无论是酶的寡聚结构还是 tRNA 中的鉴别碱基在各生物门类中都不保守。为了更好地理解这种结构多样性及其功能后果,对嗜热栖热菌(一种极端嗜热菌)的原核甘氨酰化系统进行了研究,并分析了它与其他来源的甘氨酰化系统在结构和功能上的相互关系。将源自嗜热栖热菌基因的二聚体嗜热甘氨酰 -tRNA 合成酶(Gly -tRNA 合成酶)的蛋白质序列与其他二聚体 Gly -tRNA 合成酶的序列进行比对,发现所有这些 2 类合成酶中基序 1 具有非典型特征。有趣的是,原核嗜热酶的序列类似于真核生物和古细菌的 Gly -tRNA 合成酶,它们都是二聚体,并且与来自其他原核生物的四聚体酶有很大差异。用不同来源的 tRNA 和合成酶进行交叉氨酰化反应,提供了关于甘氨酰化系统之间功能相互关系的信息。涉及嗜热栖热菌和大肠杆菌组分的高效甘氨酰化反应表明,尽管合成酶的结构有很大差异,但原核生物中识别过程具有保守性。然而,嗜热栖热菌的 Gly -tRNA 合成酶能使真核 tRNA(Gly) 氨酰化,而大肠杆菌酶的氨酰化能力仅限于原核 tRNA(Gly)。在真核系统中也发现了类似的行为,哺乳动物 Gly -tRNA 合成酶对 tRNA 甘氨酰化的物种特异性受限,与酵母酶较宽松的特异性形成对比。各种 Gly -tRNA 合成酶所氨酰化的 tRNA 的共有序列显示,仅在接受臂中的 G1 - C72、反密码子中的 C35 和 C36 以及参与 tRNA 折叠的 (G10 - Y25) - G45 三联体具有保守性。这些核苷酸的保守性表明它们在甘氨酰化中起关键作用,并表明它们是祖先甘氨酸识别序列的一部分。在原核生物、真核生物和古细菌之间的系统发育联系以及嗜热栖热菌在该系统发育中的特殊地位的背景下,对这些特征进行了讨论。