Schutkowski M, Bernhardt A, Zhou X Z, Shen M, Reimer U, Rahfeld J U, Lu K P, Fischer G
Max-Planck-Research Unit Enzymology of Protein Folding, Halle, Germany.
Biochemistry. 1998 Apr 21;37(16):5566-75. doi: 10.1021/bi973060z.
Proline residues provide a backbone switch in a polypeptide chain, which is controlled by the cis/trans isomerization about the peptidyl-prolyl bond. Phosphorylation of serine- and threonine-proline motifs has been shown to be a critical regulatory event for many proteins. The biological significance of these motifs has been further highlighted by the discovery of a novel and essential peptidyl-prolyl cis/trans isomerase Pin1. Pin1 is required for progression through mitosis via catalyzing the isomerization of phosphorylated Ser/Thr-Pro motifs specifically present in mitosis-specific phosphoproteins. However, little is known whether the phosphorylation regulates the conformational switch of the Ser/Thr-Pro bonds. Here, we report the synthesis and conformational characterization of a series of peptides that contain the phosphorylated or nonphosphorylated Ser/Thr-Pro motifs. Phosphorylation affected the rate of the cis to trans isomerization of the Thr/Ser-Pro bonds. As determined by a protease-coupled assay, the isomerization rate of phosphorylated Thr-Pro bond was found to be 8-fold slower than that of the nonphosphorylated analogue. Furthermore, studies of the pH dependence of the isomerization of the phosphopeptides reveal that both cis content and the rate constant of prolyl cis to trans isomerization are lower for the dianionic state of the phosphothreonine-containing peptides. These effects of phosphorylation are specific for phosphorylated Ser/Thr since neither phosphorylated Tyr nor glutamic acid was able to affect the prolyl isomerization. Finally, our experiments provide evidence that effective catalysis of cis/trans isomerization of phosphorylated Ser/Thr-Pro bonds by Pin1 is specific to the dianionic form of the substrate. Thus, our results demonstrate that protein phosphorylation specifically regulates the backbone dynamics of the Ser/Thr-Pro motifs and that Pin1 specifically isomerizes the certain conformation of the phosphorylated Ser/Thr-Pro motifs.
脯氨酸残基在多肽链中提供了一个主链开关,该开关由肽基 - 脯氨酰键的顺/反异构化控制。丝氨酸 - 脯氨酸和苏氨酸 - 脯氨酸基序的磷酸化已被证明是许多蛋白质的关键调节事件。一种新型且必需的肽基 - 脯氨酰顺/反异构酶Pin1的发现进一步突出了这些基序的生物学意义。Pin1通过催化有丝分裂特异性磷蛋白中特有的磷酸化丝氨酸/苏氨酸 - 脯氨酸基序的异构化,参与有丝分裂进程。然而,关于磷酸化是否调节丝氨酸/苏氨酸 - 脯氨酸键的构象转换,人们所知甚少。在此,我们报道了一系列含有磷酸化或非磷酸化丝氨酸/苏氨酸 - 脯氨酸基序的肽的合成及构象表征。磷酸化影响了苏氨酸/丝氨酸 - 脯氨酸键的顺反异构化速率。通过蛋白酶偶联测定法确定,磷酸化苏氨酸 - 脯氨酸键的异构化速率比非磷酸化类似物慢8倍。此外,对磷酸化肽异构化的pH依赖性研究表明,含磷酸苏氨酸的肽的二阴离子状态下,顺式含量和脯氨酰顺反异构化速率常数均较低。磷酸化的这些作用对磷酸化的丝氨酸/苏氨酸具有特异性,因为磷酸化的酪氨酸和谷氨酸均不能影响脯氨酰异构化。最后,我们的实验提供了证据,证明Pin1对磷酸化丝氨酸/苏氨酸 - 脯氨酸键的顺反异构化的有效催化作用对底物的二阴离子形式具有特异性。因此,我们的结果表明,蛋白质磷酸化特异性地调节丝氨酸/苏氨酸 - 脯氨酸基序的主链动力学,并且Pin1特异性地异构化磷酸化丝氨酸/苏氨酸 - 脯氨酸基序的特定构象。