
将机器学习的优势与快速积累的高通量测序数据相结合,有助于我们进行生物学发现和推动分子医学发展。近年来,批量RNA测序技术已成为一种经济高效且广泛应用的方法,用于获取测试样本的完整转录组图谱,从而能够识别关键的癌症相关表达模式。反过来,各种机器学习算法能够开发出信息丰富的诊断和预后模型,确保对高维RNA测序数据进行高效处理。这些方法的融合在肿瘤学领域显示出巨大的前景。在这篇叙述性综述中,我们将肿瘤学中基于批量RNA测序的机器学习模型描述为一个从数据预处理到模型验证的完整工作流程。我们提供了算法选择和研究设计的实用建议,并讨论了批量RNA测序反卷积作为一种经济高效的替代单细胞RNA测序的方法,用于分析肿瘤细胞组成。这些见解为开发具有转化潜力的可重复诊断和预后模型提供了实用指南。
通过电刺激对明确脑区进行术中图谱定位的清醒手术(AwS)已成为胶质瘤手术的一个重要组成部分。然而,AwS对低级别胶质瘤(LGG)切除范围(EOR)的影响存在争议。本系统评价旨在研究AwS对LGG患者切除情况和神经学结局的影响。我们在PubMed、Embase和Scopus数据库中进行了文献检索。纳入所有比较成人LGG患者AwS与全身麻醉(GA)下手术的研究。采用ROBINS-I(“干预非随机研究中的偏倚风险”)评估研究质量。分别使用风险比(RR)和95%置信区间(CI)的标准化均数差(SMD)来计算二分类结局和连续变量的效应量。本系统评价和荟萃分析纳入了10项研究。共735例患者,其中AwS组401例,GA组334例。我们发现术前MRI上肿瘤体积无显著差异(SMD:-0.14;95%CI:-0.31至0.03;p=0.11)。两组间平均体积EOR无差异(SMD:0.79;95%CI:-0.24至1.81;p=0.13)。AwS组和GA组的早期运动(RR:0.50;95%CI:0.16 - 1.51;p=0.23)和总体神经学结局(RR:0.67;95%CI:0.23 - 1.93;p=0.46)相当。包括运动和语言功能缺损在内的晚期神经学结局,AwS组明显更好(RR:0.27;95%CI:0.13 - 0.54;p=0.0002)。我们的荟萃分析表明,LGG患者AwS与非清醒手术的总体EOR相当。虽然早期神经学结局无显著差异,但接受AwS的LGG患者长期总体神经学结局更好。
引言:本研究旨在开发并验证人工智能与学术写作问卷(AI - AWQ),以评估参与者对人工智能的看法。主要重点是探索在教育环境中影响对人工智能态度的因素。 方法:本研究采用混合方法来开发和验证AI - AWQ的心理测量特性。该问卷由30个项目组成,采用5点李克特量表评分(1 = 从不,5 = 总是),对伊朗设拉子医科大学252名医学和牙科学生进行了调查,这些学生在2023 - 2024学年修读了学术写作课程。使用探索性因子分析(EFA)对数据进行分析,并采用方差最大化旋转来阐明潜在因素。 结果:共分析了252份完整问卷,其中59.5%来自伊朗学生,其余受访者为国际学生。探索性因子分析结果显示抽样充足性令人满意(KMO = 0.930),Bartlett球形检验显著(P < 0.001),证实数据适合进行因子分析。结构效度检验提取了五个不同的因子——人工智能的感知有效性、伦理和真实性担忧、人工智能支持的写作过程、人工智能反馈与写作提升以及情感和动机影响——这些因子共同解释了总方差的77.99%。该问卷显示出很强的效度和信度,内容效度指数(CVI)为0.903,内容效度比率(CVR)为0.882,Cronbach's alpha系数为0.883,证实了总体内部一致性。 结论:研究结果表明,AI - AWQ为测量对人工智能的看法提供了可靠性和有效性的初步证据,深入了解了人工智能与学术写作的多面性。本研究有助于理解在教育背景下塑造个人对人工智能看法的因素,并为进一步研究奠定了基础。
Mesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein that promotes malignant behaviors including tumor cell proliferation, migration and immune evasion through activation of multiple signaling pathways, such as MAPK/ERK and PI3K/AKT. MSLN is widely overexpressed in malignant tumors but shows low expression levels in normal tissues. This differential expression pattern renders MSLN an important clinical therapeutic target. Currently, MSLN-based tumor-targeting approaches predominantly involve antibody-drug conjugates (ADC), cancer vaccines, oncolytic viruses and chimeric antigen receptor T-cell (CAR-T) therapies. These therapeutic modalities have demonstrated encouraging efficacy in preclinical studies and phase I/II clinical trials. However, challenges such as unclear molecular mechanisms of MSLN signaling pathways and extracellular domain shedding impose limitations on targeted therapeutic strategies. Therefore, this review comprehensively discusses the gene and protein structures of MSLN, its biological functions, and related targeted therapeutic strategies, providing new insights into MSLN-targeted cancer therapy.
PURPOSE: Oral frailty screening and care for elderly cancer patients undergoing chemotherapy have yet to be integrated into cancer care protocols, and there persists a notable deficiency in knowledge concerning the experiences of elderly cancer patients suffering from oral frailty. This study aims to explore the experiences and responses of elderly Chinese cancer patients undergoing chemotherapy for oral frailty. METHODS: Beginning in February 2024, a purposive sampling approach was used to select elderly cancer patients undergoing chemotherapy who scored four or higher on the Oral Frailty Index-8 scale for semi-structured interviews. Two researchers analyzed the data using interpretive phenomenological research methods. RESULTS: Twenty-five elderly cancer patients undergoing chemotherapy with oral frailty were recruited. Four themes were identified: (1) The eroded mouth, impairment and decline; (2) confronting a failing body, at a loss and exhausted; (3) navigating uncertainty, helplessness and struggles; and (4) finding a new balance, transcendence and personal growth. Among these four themes, the researchers developed 13 subthemes. CONCLUSION: The experiences and coping processes of oral frailty in elderly cancer patients undergoing chemotherapy are complex, encompassing both positive and negative physical and psychological experiences. Oncology nurses must emphasize the oral health of elderly cancer patients undergoing chemotherapy and integrate oral frailty screening and care throughout the entire cancer treatment process.
Colorectal cancer (CRC) remains the third leading cause of mortality among cancer patients in developed countries. Each new study in this field can contribute to better detection, diagnosis, and treatment of this disease. Our study aimed to assess transcriptional activity of genes associated with the biotransformation of xenobiotics and endobiotics in all three phases in the CRC , including correlations between them, as well as the aromatic hydrocarbon receptor (AhR) pathways. Based on transcriptome analysis (1252 mRNAs) of the CRC tissue and healthy colon, the upregulation or downregulation of 46 significant mRNAs was presented. The study also revealed the downregulation of and upregulation of and , previously undistinguished and potentially therapeutically valuable in CRC. The diagnostic potential of , , , and was demonstrated. It was stated that the , , , and did not correlate in healthy intestinal tissue whereas , , , , , and did not correlate in CRC. The disturbed transcriptional activity of genes related to the biotransformation process at all stages of CRC suggests that this may be the cause of its occurrence; the genes ought to be taken into account in preventive strategies and the treatment of patients.
BACKGROUND: Although large language models (LLMs) show great promise in processing medical text, they are prone to generating incorrect information, commonly referred to as hallucinations. These inaccuracies present a significant risk for clinical applications where precision is critical. Additionally, relying on human experts to review LLM-generated content to ensure accuracy is costly and time-consuming, which sets a barrier against large-scale deployment of LLMs in health care settings. OBJECTIVE: The primary objective of this study was to develop an automatic artificial intelligence (AI) system capable of extracting structured information from unstructured medical data and using advanced reasoning techniques to support reliable clinical decision making. A key aspect of this objective is ensuring that the system incorporates self-verification mechanisms, enabling it to assess the accuracy and reliability of its own outputs. By integrating such mechanisms, we aim to enhance the system's robustness, reduce reliance on human intervention, and improve the overall trustworthiness of AI-driven medical summarization and evaluation. METHODS: The proposed framework comprises 2 layers: a summarization layer and an evaluation layer. The summarization layer uses Llama2-70B (Meta AI) and Mistral-7B (Mistral AI) models to generate concise summaries from unstructured medical data, focusing on tasks such as consumer health question summarization, biomedical answer summarization, and dialog summarization. The evaluation layer uses GPT-4-turbo (OpenAI) as a judge, leveraging pairwise comparison strategies and different prompt strategies to evaluate summaries across 4 dimensions: coherence, consistency, fluency, and relevance. To validate the framework, we compare the judgments generated by the LLM assistants in the evaluation layer with those provided by medical experts, offering valuable insights into the alignment and reliability of AI-driven evaluations within the medical domain. We also explore a way to handle disagreement among human experts and discuss our methodology in addressing diversity in human perspectives. RESULTS: The study found variability in expert consensus, with average agreement rates of 19.2% among all experts and 54% among groups of 3 experts. GPT-4 (OpenAI) demonstrated alignment with expert judgments, achieving an average agreement rate of 83.06% with at least 1 expert and comparable performance in cross-validation tests. The enhanced guidance in prompt design (prompt-enhanced guidance) improved GPT-4's alignment with expert evaluations compared with a baseline prompt, highlighting the importance of effective prompt engineering in auto-evaluation of summarization tasks. We also evaluated open-source LLMs, including Llama-3.3 (Meta AI) and Mixtral-Large (Mistral AI), and a domain-specific LLM, OpenBioLLM (Aaditya Ura), for comparison as LLM judges. CONCLUSIONS: This study highlights the potential of LLMs as reliable tools for unstructured medical data summarization and evaluation to reduce the dependency on human experts and also states the limitations. The proposed framework, multiagent summarization and auto-evaluation, demonstrates scalability and adaptability for clinical applications while addressing key challenges like hallucination and position bias.
背景:术后恶心呕吐(PONV)是外科手术常见的并发症,尤其是在根治性胸腔镜肺癌手术中,会导致患者不适、延迟康复并增加医疗成本。盐酸戊乙奎醚(PHC)是一种新型抗胆碱能药物,可能因其对M和M毒蕈碱受体的选择性拮抗作用,从而降低与手术和麻醉相关的不良反应,如PONV。本研究旨在探讨PHC在降低根治性胸腔镜肺癌手术后PONV发生率和严重程度方面的疗效和安全性。 方法:本单中心、前瞻性、双盲、随机对照临床试验将纳入446例计划行根治性胸腔镜肺癌手术的患者。入选参与者将按1:1的比例随机分配至试验组或对照组,每组223例患者。试验组将在麻醉前静脉注射0.25mg PHC,并在术后48小时内静脉输注0.25mg PHC,而对照组将接受生理盐水而非PHC。主要结局将是术后24小时内PONV的发生率。次要结局将包括不同时间间隔(术后0 - 6、6 - 12和12 - 24小时)内PONV的发生率和严重程度;术后48小时使用视觉模拟量表评估的外科医生和患者满意度;以及术后48小时内口干、头晕、脸红、皮肤干燥、尿潴留、谵妄和体温升高等不良反应的发生情况。将进行意向性分析。 讨论:我们假设静脉注射PHC可降低PONV的发生率和严重程度,并提高外科医生和患者的满意度。本试验的结果可能对改善根治性胸腔镜肺癌手术患者的预后和优化术后护理具有重要意义。 试验注册:本试验方案于2024年4月19日在中国临床试验注册中心注册(注册号:ChiCTR2400083
BACKGROUND/OBJECTIVES: Itch is the most burdensome symptom in atopic dermatitis (AD) and prurigo nodularis (PN) and is associated with significant psychological distress, sleep deprivation and impaired quality of life. Achieving rapid control of itch is expected to minimize symptomatology and disease burden. Nemolizumab, which targets the interleukin 31 (IL-31) pathway, rapidly relieved itch in Phase 2 trials; thus, a post hoc analysis of four pivotal randomized controlled clinical trials of nemolizumab in AD and PN was performed to further evaluate the improvement of itch over the first 14 days of therapy. METHODS: Data from ARCADIA 1 and 2 in AD (N = 1728) and OLYMPIA 1 and 2 in PN (N = 560) were analysed. Patients reported itch intensity and sleep disturbance daily. Differences in the proportion of itch and sleep responders (patients with ≥4-point improvement from baseline in peak pruritus numerical rating scale [PP-NRS] or sleep disturbance [SD-NRS] score) between nemolizumab and placebo groups were calculated. RESULTS: Nemolizumab rapidly reduced itch in AD (ARCADIA 1 and 2), with a difference versus placebo in PP-NRS responders apparent by Day 2 (pooled data: 10.7% vs. 2.9%; 95% CI: 5.6-10.1; p < 0.0001) that steadily increased through Day 14. Nemolizumab also reduced itch rapidly in PN (OLYMPIA 1 and 2); a difference versus placebo occurred by Day 2 (pooled data: 17.2% vs. 3.7%; 95% CI: 6.8-16.7; p < 0.0001). Early improvement (Day 2) was also observed in sleep in nemolizumab-treated patients. In pooled analyses in AD, 9.9% (nemolizumab) versus 4.6% (placebo; 95% CI: 2.8-7.7; p = 0.0001) were SD-NRS responders and in PN, 13.4% versus 4.3% (95% CI: 4.0-13.0; p = 0.0013). Itch and sleep response data in individual studies were consistent with the pooled data. CONCLUSIONS: This analysis confirms previously reported data that nemolizumab relieves itch and sleep disturbance by Day 2 in patients with moderate-to-severe AD and PN, indicating that targeting the IL-31 pathway presents an important way to achieve rapid itch response.
背景:ChatGPT在自然语言任务方面表现出色,但其在中国国家医师资格考试(NMLE)和中医教育中的表现仍有待深入研究。与此同时,基于中文语料库的大型语言模型(LLMs)如文心一言、通义千问、豆包和百川等已经出现,但其在NMLE中的有效性仍有待系统评估。 目的:本研究旨在定量比较6个大型语言模型(GPT-3.5、GPT-4、文心一言、通义千问、豆包和百川)在回答2018年至2024年NMLE问题方面的表现,并分析它们作为中医教育辅助工具的可行性。 方法:我们从NMLE综合笔试的4个内容单元(2018 - 2024年)中选取问题,将基于图像和表格的内容预处理为标准化文本,然后将问题输入到每个模型中。我们评估了回答的准确性、全面性和逻辑连贯性,以分数和准确率与官方答案进行定量比较(及格分数:360/600)。 结果:GPT-4在所有单元中的表现均优于GPT-3.5,在单元1中的平均准确率为66.57%(标准差3.21%),单元2为69.05%(标准差2.87%),单元3为71.71%(标准差2.53%),单元4为80.67%(标准差2.19%),分数始终高于及格线。在中国的模型中,百川表现出最高的整体性能,平均得分为454.8(标准差17.3),单元1的平均准确率为73.2%(标准差2.89%),单元3为71.5%(标准差2.64%),单元2的平均准确率为70.3%(标准差3.02%),单元4为78.2%(标准差2.47%)。文心一言(平均得分442.3,标准差19.6;单元1准确率 = 70.8%,标准差3.01%;单元2准确率 = 68.7%,标准差3.15%;单元3准确率 = 69.1%,标准差2.93%;单元4准确率 = 68.3%,标准差2.76%)、通义千问(平均得分426.5,标准差21.4;单元1准确率 = 67.4%,标准差3.22%;单元2准确率 = 65.9%,标准差3.31%;单元3准确率 = 66.2%,标准差3.08%;单元4准确率 = 67.2%,标准差2.89%)和豆包(平均得分413.7,标准差23.1;单元1准确率 = 65.2%,标准差3.45%;单元2准确率 = 63.8%,标准差3.52%;单元3准确率 = 64.1%,标准差3.27%;单元4准确率 = 62.8%,标准差3.11%)均超过了及格分数。百川的整体平均准确率(75.8%,标准差2.73%)显著高于其他中国模型(与文心一言相比,χ²₁ = 11.4,P = 0.001;与通义千问相比,χ²₁ = 28.7,P < 0.001;与豆包相比,χ²₁ = 45.3,P < 0.001)。GPT-4的整体平均准确率(77.0%,标准差2.58%)略高于百川,但无统计学意义(χ²₁ = 2.2,P = 0.14),而两者均优于GPT-3.5(整体准确率 = 68.5%,标准差3.67%;GPT-4与GPT-3.5相比,χ²₁ = 89.8,P < 0.001;百川与GPT-3.5相比,χ²₁ = 76.3,P < 0.001)。 结论:鉴于GPT-4和中国开发的大型语言模型如百川在NMLE上的良好表现,它们在中国医学教育中显示出作为辅助工具的潜力。然而,在复杂推理、多模态处理和动态知识更新方面仍需要进一步优化,人类医学专业知识在临床实践和教育中仍然至关重要。
背景:紫花苜蓿(Medicago sativa L.)是一种在全球具有重要意义的饲料作物,近几十年来其育种进展有限。紫花苜蓿的遗传增益面临诸多挑战,包括它作为异花授粉四倍体物种,存在明显的近交衰退现象;在合成杂交中亲本数量众多,导致品种间遗传分化有限;以及缺乏基因组资源来推进该物种的基因组育种技术。 结果:我们旨在通过为紫花苜蓿改良生成基因组资源来解决其中一些限制,包括重新格式化一个等位基因感知参考基因组以去除重复单倍型,同时保留存在/缺失变异;进行基因组注释以识别基因和功能元件;发现单核苷酸多态性(SNP)并预测SNP变异效应。通过纳入来自多种组织类型和胁迫处理的RNA测序,扩展了预测的基因集。研究了与澳大利亚放牧系统相关的7个市售品种的316个样本的遗传多样性,包括对基因存在/缺失变异的群体水平分析。品种间遗传分化很小,品种内的多样性高于品种间。发现几个基因在群体水平上存在/缺失情况不同。 结论:这些发现为紫花苜蓿育种计划提供了见解,并强调了继续努力开发基因组工具以释放该作物全部潜力的必要性。
BACKGROUND: The development of aortic dissection (AD) is closely associated with extracellular matrix degradation and the apoptosis of vascular smooth muscle cells (VSMCs). Antioxidant-1 (ATOX1), a copper-binding protein, the precise mechanisms by which it contributes to extracellular matrix (ECM) degradation, VSMC apoptosis, and the onset of AD remain to be further elucidated. METHODS AND RESULTS: Through high-throughput sequencing, we identified a significant increase in the expression of ATOX1 in patients with AD. Further validation using tissue staining, RT-PCR and Western blot revealed that ATOX1 expression was elevated in AD patients, AD mouse models, and in vitro human aortic vascular smooth muscle cells (HAVSMCs) induced by Angiotensin II (AngII). In vitro experiments showed that silencing ATOX1 or pharmacologically inhibiting ATOX1 with DC_AC50 significantly reduced copper ion expression and the secretion of matrix metalloproteinases (MMPs), while alleviating cell apoptosis in HAVSMCs. Targeted knockdown of ATOX1 in smooth muscle cells using adeno-associated virus vector 9 (AAV9) or pharmacological inhibition of ATOX1 effectively slowed the progression of AD in a β-aminopropionitrile (BAPN)-induced mouse model. Additionally, ATOX1 expression is directly regulated by miR-133b, which was found to be significantly downregulated in the serum and aortic tissues of AD patients, exhibiting an inverse correlation with ATOX1 upregulation in AD. MiR-133b mimic successfully reversed the effects of ATOX1-induced MMPs secretion and apoptosis in HAVSMCs. Lastly, overexpression of miR-133b through AAV9 significantly attenuated the progression of BAPN-induced AD in mice. CONCLUSIONS: Our study suggests that inhibiting ATOX1 may reduce ECM degradation and cell apoptosis, thereby slowing the progression of AD, and highlights ATOX1 inhibition as a potential new strategy for AD treatment.
PURPOSE: Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional (3D) spinal deformity, with transverse plane rotational components increasingly targeted by modern surgical techniques. Yet, clinical evaluation remains predominantly based on 2D radiographic parameters, including the widely used Lenke classification. In response, the 3D Classification Task Force of the Scoliosis Research Society (SRS) developed a comprehensive, clinically relevant classification system that remains intuitive, reproducible, and readily applicable by spine surgeons. This manuscript introduces the proposed SRS-Lenke-Aubin 3D classification and evaluates its ability to provide a structured and clinically meaningful 3D characterization of spinal deformities in AIS. METHODS: To maintain continuity with standard clinical practices, the system builds upon the established Lenke classification and introduces two complementary 3D descriptors: the orientation of the regional plane of deformation (ORPD) and the apical vertebral rotation (AVR). These indices capture transverse plane deformities at the regional and local levels, respectively. Each was independently assessed for the proximal thoracic (PT), main thoracic (MT), and thoracolumbar/lumbar (TL/L) regions using calibrated 3D reconstructions from biplanar radiographs. A population-representative cohort of 285 AIS surgical cases was used to evaluate the system. ORPD and AVR values were translated into categorical modifiers using predefined clinical thresholds. RESULTS: The new SRS-Lenke-Aubin 3D AIS classification adds two transverse plane modifiers per spinal region-the ORPD and AVR-yielding a modular 3-tiered, 4-modifier system: Curve type (1-6), Lumbar spine modifier (A, B, C), Thoracic sagittal profile modifier (-, N, +), Transverse plane regional modifier (ORPD: 1-3) and Transverse plane local modifier (AVR: s, m, l). A broad range of ORPD × AVR combinations was observed across the cohort, reflecting the system's ability to capture transverse plane heterogeneity. Notably, similar coronal curve types often exhibited divergent transverse morphologies, underscoring the added value of these 3D descriptors in identifying clinically relevant variation. CONCLUSIONS: The SRS-Lenke-Aubin 3D classification enriches the existing Lenke framework by incorporating practical transverse plane descriptors compatible with standard imaging workflows. This system offers a clinically meaningful step toward more complete 3D characterization of AIS, with potential applications in improving surgical planning, assessing outcomes, and supporting future integration with automated 3D tools.
细胞外基质(ECM)通过调节癌细胞行为、侵袭和转移,在肿瘤进展中发挥关键作用。这种重要性推动了生物材料的开发,这些生物材料能紧密模拟天然肿瘤ECM,以创建更准确、更具预测性的体外癌症模型。在本研究中,氧化纤维素纳米纤维(OCNF)被用作乳腺肿瘤球体扩张的简单三维支架。OCNF在细胞培养基中形成一种高度动态的水凝胶,其流变学特性适合模拟早期乳腺肿瘤ECM。这种动态环境使MCF-7细胞能够在6天内形成球体,并持续增殖长达12天。将MCF-7细胞与成纤维细胞共培养,进一步模拟了含有癌症相关成纤维细胞(CAF)的肿瘤微环境。由于水凝胶通过非共价相互作用结合在一起,添加额外的细胞培养基并进行移液操作可将其转化为类似液体的状态,便于球体释放和收集,用于药物筛选和渗透研究等下游应用。总体而言,这项工作展示了一种使用纤维素纳米纤维水凝胶制备肿瘤球体的简便方法,并可能激发纤维素水凝胶在生物医学应用中的进一步创新。
PURPOSE OF REVIEW: While excess adiposity is a known risk factor for incident heart failure ( HF), once the condition is established, observational data suggest that increased body mass index (BMI) may confer a survival advantage. This paradox has emphasized the underlying roles of cardiorespiratory fitness (CRF), and body composition, particularly lean mass (LM), in influencing clinical outcomes. RECENT FINDINGS: In this review, we explore the multifaceted nature of the obesity paradox in HF, with a focus on emerging anti-obesity incretin-mimetic therapies, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) receptor agonists. These agents have demonstrated remarkable efficacy in weight reduction and favorable cardiovascular profiles in patients with HF with preserved ejection fraction (EF), yet their use in other HF populations, such as HF with reduced EF, raises important clinical questions and the urgent need for future research. Concerns include the potential for LM loss, implications for sarcopenic obesity, and the uncertain impact of weight loss on outcomes in patients who may not benefit from weight loss. We also highlight the need to assess therapeutic outcomes beyond BMI, incorporating measures of CRF, such as peak oxygen consumption (VO₂ peak), quality of life, and functional capacity, using tools such as the 6-minute walk test. Barriers to implementation, including cost, provider hesitation, insurance restrictions, and patient level challenges are also reviewed. Finally, we call for future research using contemporary cohorts and advanced phenotyping to reevaluate the obesity paradox in the context of modern pharmacologic interventions. As obesity treatment continues to evolve, a patient-centered, individualized approach that integrates body composition, functional status, and comorbid conditions will be essential in optimizing care for individuals with HF.
BACKGROUND: While previous genome-wide association studies (GWAS) identified multiple risk loci for suicide ideation (SI) and suicide attempt (SA), there is still a limited understanding of the genetic predisposition underlying suicidal behaviors in diverse populations. This study aimed to conduct a large-scale investigation of the suicidality spectrum (SP) to generate new insights into its biology and epidemiology. METHODS: Leveraging ancestrally diverse participants (SI N =179 881/1 013 900; SA N =66 867/1 654 798) from the UK Biobank, All of Us Research Program, Million Veteran Program, FinnGen, and Psychiatric Genomics Consortium, we performed GWAS meta-analyses for SI and SA, and a multivariate GWAS of SP. We applied multiple analytical approaches to identify genomic loci associated with suicide traits and to functionally annotate these significant signals. Phenome-wide genetic correlation and genetically informed causal analyses were further conducted to provide convergent evidence on the relationships of suicidal behaviors with health outcomes, brain imaging-derived phenotypes, and metabolomic traits. We identified 90 independent lead single-nucleotide polymorphisms (SNPs) for suicidal behaviors, of which 49 were novel. SNP-based heritability was higher for SA (SNP-h =0.115±0.005) than for SI (SNP-h =0.040±0.002) and SP (SNP-h =0.050±0.002), and their genetic correlations ranged from 0.639 to 0.960. Functional annotation analyses highlighted associated genes (e.g., , , ), enriched gene sets (e.g., cellular response to stress), and potential therapeutic drug candidates (e.g., cariprazine, paliperidone, droperidol), with some signals shared across suicide traits but more specific to SI or SA. Suicide behaviors were genetically associated with a broad spectrum of complex traits, primarily in the domains of mental health, physical health, behaviors, and socioeconomic factors, some of which revealed causal relationships. INTERPRETATION: This study provides convergent genetic evidence for both shared and phenotype-specific components of suicidal behaviors and delineates their associated factors spanning from proximal clinical and behavioral traits to more distal social determinants. These findings refine our understanding of the etiology of suicidal behaviors and may inform targeted strategies for suicide prevention in both clinical and public health settings. RESEARCH IN CONTEXT: Suicidal behaviors remain a serious public health concern and contribute to substantial mortality globally. However, their genetic predisposition and risk profiles associated with them are not yet fully established although multiple approaches, including genome-wide association studies (GWAS), have been applied. We searched PubMed, medRxiv, and bioRxiv for publications and preprints in English from Jan 1, 2000, to Nov 1, 2025, using the search terms "suicid*" and "GWAS". The largest previously published GWASs identified four genome-wide loci for suicide ideation and 12 for suicide attempt, and a recent preprint reported 77 loci for suicidal behaviors. These associations were mainly derived from individuals of European ancestry, with only one significant locus for suicide ideation reported in East Asian ancestry. Previous studies also attempted to prioritize putative risk genes, but most did not leverage multi-omic approaches, such as transcriptome-wide and proteome-wide association studies. Moreover, earlier work investigated the relationships between suicidal behaviors and psychiatric and behavioral traits mainly through genetic correlation analysis, without conducting phenome-wide genetically informed causal analysis. Our study identified 90 genome-wide significant associations for suicidality. These associations were distributed across European, African, Admixed American, and Asian ancestries for both suicide ideation and suicide attempt. SNP-based heritability for suicidal behaviors ranged from 4% to 12% and remained significant after conditioning on major psychiatric disorders. We prioritized 1052 genes associated with suicidal behaviors and identified 33 loci with convergent evidence across five or more gene-discovery analyses. Sixteen genes were shared across suicide ideation, suicide attempt, and suicidality spectrum, while most other loci appeared to be phenotype-specific. Drug-repurposing analysis suggested five potential therapeutic drug candidates: cariprazine, droperidol, molindone, paliperidone, and chlorprothixene. Using phenome-wide genetically informed analyses, we identified loneliness, medical abortion, and age at first sexual intercourse as putative causal risk factors for suicidal behaviors. Suicidal behaviors were also associated with adverse consequences, including hospital admissions and multiple mental health and physical conditions. The predisposition to suicidal behaviors is due to genetic mechanisms acting through molecular changes across multiple omic domains in brain and peripheral systems. Although psychiatric disorders may mediate the genetic liability of suicidal behaviors, a proportion of the risk appears to be independent of psychiatric diagnosis. Suicidal behaviors are influenced by diverse genetic and causal risk factors, and can also lead to broad adverse health consequences.
基于不同响应模式实现镉离子(Cd)和汞离子(Hg)的高效灵敏检测具有重要意义,因为它们的大量排放严重危害生态环境和人类健康。在此,合成了一种新型的基于肽的荧光探针DGGC,其具有令人满意的水溶性(100%水溶液)和显著大的斯托克斯位移(230 nm)。DGGC基于荧光增强响应,对Cd表现出高选择性和优异的灵敏度;基于荧光猝灭响应,对Hg也表现出高选择性和优异的灵敏度。Cd和Hg的检测限分别低至8.6 nM和35.1 nM。荧光滴定、Job曲线分析和电喷雾高分辨质谱数据结果表明,DGGC与Cd和Hg以2:1的化学计量比结合。此外,生物成像结果表明,DGGC对活细胞和斑马鱼幼虫中的Cd和Hg成像具有显著的区分灵敏度。此外,DGGC在各种实际样品中对Cd和Hg的定量分析显示出高精度和准确性。此外,DGGC在365 nm紫外光下用肉眼监测了水稻、叶片、猕猴桃和南瓜表面的Cd和Hg污染情况。加入Cd和Hg后DGGC的荧光变化用作一个INHIBIT逻辑门。更重要的是,智能手机颜色识别应用程序成功应用于Cd和Hg的半定量检测,无需大型仪器。
肼(NH)是一种非常重要的化学物质,在各个领域都有广泛的应用。然而,它具有高毒性,并对环境构成重大危害。在这项工作中,一种新型的四氢吖啶型荧光探针(E)-2-(2-(4-丁氧基-4'-(1,1,5,5-四甲基-1,3,4,5,6,12b-六氢-2H-2,4a-亚甲基苯并[c]吖啶-7-基)-[1,1'-联苯]-3-基)乙烯基)-3-乙基苯并[d]噻唑-3-鎓(ABP-BBT)被成功地从倍半萜类化合物异长叶烯酮合成出来,用于检测NH。结果表明,ABP-BBT对NH表现出优异的选择性、高灵敏度和低检测限(7.5 nM),同时具有较大的斯托克斯位移(>150 nm)。通过1H NMR滴定和高分辨率质谱(HRMS)分析阐明了探针ABP-BBT对NH的识别机制。ABP-BBT已成功应用于检测包括砂土、黄土和黑土在内的三种土壤样品中的NH,并表现出良好的环境适应性。此外,ABP-BBT还用于洋葱组织、HepG2细胞和斑马鱼中NH的外源成像,证明了其在生物体内检测NH的潜力。
三唑酮(TDF)是一种高效、低毒、具有强内吸性的广谱三唑类杀菌剂。烟草和蔬菜中过量残留会影响人体健康。因此,迫切需要建立一种简单、快速、灵敏的检测方法用于烟草和蔬菜中TDF残留分析。本研究合成了胶体金纳米颗粒(Au NPs)、金纳米花(Au NFs)和金纳米棒(Au NRs),并将其与抗TDF单克隆抗体(mAb)结合制备免疫层析试纸条(ICS)探针。以AuNPs-mAb、AuNFs-mAb和AuNRs-mAb为探针的试纸条最低目视检测限(vLOD)分别为7.8、15.6和15.6 ng/mL。三种试纸条与戊唑醇、己唑醇、腈菌唑和苯醚甲环唑四种结构类似物均无明显交叉反应,表明三种试纸条均具有良好的特异性。为评估0和62.5 ng/mL TDF的存在情况,使用了十条试纸条,结果显示准确性极佳,无假阳性或假阴性。此外,三条试纸条(同一批次)在储存三个月后用于检测TDF(0和62.5 ng/mL),结果仍然准确,表明三种试纸条均具有良好的重复性和稳定性。对黄瓜和烟叶样品(0、2.5、17.5和65 μg/kg)进行了TDF的加标回收试验,试验结果表明试纸条检测准确性高。本研究基于三种不同形貌的金纳米颗粒建立了三种比色试纸条,具有处理时间短、成本效益高和技术要求低的优点,适用于TDF的快速现场定性检测。
早期肺癌的筛查与检测对于该疾病的诊断至关重要。然而,标志物的低特异性以及检测方法灵敏度不足限制了它们在早期肺癌筛查中的广泛应用。表面增强拉曼光谱(SERS)技术因其高灵敏度、单分子水平检测能力和多重检测特性,在肺癌生物标志物检测领域受到越来越多的关注。本综述的目的是系统回顾SERS技术在检测肺癌相关标志物外泌体、微小RNA(miRNA)和DNA甲基化方面的最新进展。此外,本综述全面回顾了SERS技术在检测肺癌患者血液、唾液样本及挥发性有机化合物(VOC)中的实际应用。最后,本综述强调了SERS技术在肺癌生物标志物检测领域面临的挑战和未来前景。
粘度敏感荧光探针在生物成像研究领域正受到广泛关注,主要是因为它们在监测溶酶体等细胞器内动态粘度变化方面具有巨大潜力。这些创新型探针对于细胞微环境的生物物理性质及其在复杂生物过程和疾病发病机制中的影响至关重要。在此,我们设计了四种基于BODIPY的粘度响应荧光探针,它们含有作为荧光转子的中位羧酸盐。这些探针在溶液中和肿瘤细胞内均表现出对粘度的非凡敏感性。我们系统地验证了通过改变中位取代基的空间位阻效应,可以有效调节探针的荧光强度。此外,值得注意的是,探针B-Me和B-Bn能够在溶液中自发形成J-聚集体,这与紫外吸收的红移有关。有趣的是,B-Bn和B-Bn表现出卓越的溶酶体靶向能力以及区分肿瘤细胞和正常细胞的能力,这可能是由于这些细胞类型固有的粘度差异所致。这一发现扩展了粘度敏感荧光探针的应用,并为早期肿瘤诊断和精准治疗研究带来了新的可能性。
背景:随着痴呆症患者数量的增加,改善其诊断和治疗方式变得愈发重要。代谢组学是对生物系统中小分子代谢物的研究,通过血浆研究揭示大脑系统的变化,从而帮助我们深入了解痴呆症。 目的:本研究的目的是阐明与痴呆症相关的代谢变化。这将通过对人体血浆使用代谢指纹技术来区分痴呆症患者和认知功能正常的个体来实现。 方法:本研究使用了比尔詹德纵向衰老研究的数据和高科技拉曼光谱,以及主成分分析(PCA)和正交偏最小二乘法判别分析(OPLS-DA)等多元统计方法。该研究观察了34名痴呆症患者和34名无认知损伤的人。 结果:代谢指纹区分出两组具有极其不同代谢特征的人群。主要研究结果表明,氧化应激和能量代谢代谢物发生了显著变化。OPLS-DA以高准确性和敏感性区分了健康样本和痴呆症样本。预期的高模型准确性和清晰的得分图划分均证实了这一点。 结论:检测到的代谢偏差有助于更深入地了解与痴呆症相关的生化过程。这些结果加深了我们对痴呆症相关生化变化的理解,并强调了基于拉曼的代谢组学指纹作为一种互补的、非侵入性方法来识别更广泛的官能团水平变化的探索潜力。
将光学过滤功能集成到透镜和微流控芯片中是减小微流控设备尺寸的一种很有前景的方法。本文提出了一种绿色制造具有光学放大功能的复合聚二甲基硅氧烷(PDMS)滤光片(C滤光片)用于叶绿素荧光检测。核心思想是将PDMS微流控芯片作为一个子滤光片(S滤光片),并赋予另一个子滤光片放大功能(F透镜)。S滤光片是通过将PDMS微流控芯片浸泡在乙醇溶解的苏丹II染料中制备的。F透镜是通过将乙醇溶解的结晶紫与二甲基甲基氢硅氧烷和二甲基甲基乙烯基硅氧烷依次混合进行透镜成型制造的。实验结果表明,乙醇可以作为一种有效且绿色的苯酚和甲苯替代品用于染料溶解。二甲基甲基氢硅氧烷能很好地溶解结晶紫。S滤光片可以过滤400 - 500 nm波长范围内的光,而F透镜可以过滤500 - 650 nm波长范围内的光。C滤光片在650 - 710 nm波长范围内的透光率为99.33%,优于商业滤光片96.72%的透光率,非常适合活藻检测。
木质胸肌(WB)是一种影响肉鸡的令人担忧的肌病,会导致鸡胸肉变硬、颜色变浅,同时其物理化学、工艺和质地特性降低。近红外光谱(NIRS)已成功用于筛选有缺陷的肉类,但其他光谱方法,如基于荧光团检测的荧光发射光谱法和基于非弹性散射的拉曼光谱法,尚未针对此用途进行过测试。从一家商业屠宰场选取了鸡胸肉(40块正常的,40块患有木质胸肌病的),由一位经验丰富的兽医进行挑选,并用NIRS(780 - 1080纳米)、在330纳米激发后进行荧光发射光谱测量(350 - 580纳米)以及拉曼光谱测量(100 - 3250厘米,移动样品曝光50秒)。低场核磁共振(LF - NMR)用于测量T2弛豫分布,并测量水分、脂肪和胶原蛋白含量作为参考。最后,偏最小二乘法(PLS)模型评估了每种技术的判别能力。NIRS和核磁共振光谱显示患有木质胸肌病的鸡胸肉中结合水更松散。荧光光谱法能够检测胶原蛋白及其交联情况以及脂肪组织,并揭示在患有木质胸肌病的鸡胸肉中有两组,一组胶原蛋白含量更高,另一组脂肪含量更高。拉曼光谱更清晰地区分了这两组,并且显示患有木质胸肌病的鸡胸肉中蛋白质含量更低,同时胶原蛋白和脂肪含量增加。水分、脂肪和胶原蛋白的参考测量值与每种方法的光谱数据主成分高度相关,证实了上述解释。尽管NIRS能准确区分正常鸡胸肉和患有木质胸肌病的鸡胸肉(准确率达100%),但荧光光谱法(准确率95%)和拉曼光谱法(准确率100%)揭示了可用于评估木质胸肌病中纤维化和脂肪变性程度的标志物,能更详细地描述组织学病变特征。
酸性磷酸酶(ACP)水平的评估对于评估多种生理和病理状况、监测疾病进展以及指导临床治疗具有重要意义。我们构建了一个利用普鲁士蓝(PB)掺杂的异金属共价有机框架(COF)纳米酶进行ACP灵敏检测的平台。合成的COF@PB/AuPt NPs在类过氧化物酶催化活性方面表现出协同增强,这源于PB和AuPt NPs的联合作用。引入COF作为支撑基质赋予了纳米酶显著的分散性和稳定性,即使在长时间储存六个月后仍能保持功能。COF@PB/AuPt纳米酶在富含HO的条件下可促进3,3',5,5'-四甲基联苯胺(TMB)氧化为氧化型TMB(oxTMB),而还原型抗坏血酸(AA)可抑制该反应。同时,ACP催化L-抗坏血酸-2-磷酸水解为AA,AA可有效抑制TMB的氧化反应。已成功实现了对ACP的灵敏检测,检测限低至2.2 mU/L。该平台对酶干扰物具有出色的选择性,在复杂生物基质中具有稳健的分析性能,在胎牛血清中的回收率为95-107%,相对标准偏差低于5%,这突出了其在临床诊断和生物医学研究中的潜力。
阿尔茨海默病(AD)仍然是一种无法治愈的神经退行性疾病,存在重大的诊断挑战。淀粉样β蛋白(Aβ)的异常聚集和单胺氧化酶B(MAO-B)的活性失调与AD的发病机制密切相关,是诊断和治疗的有前景的靶点。在此,我们通过供体-π-受体(D-π-A)框架合成了一系列部花青衍生物作为Aβ聚集体的荧光探针。此外,将选择性靶向MAO-B的药效团引入探针,以实现诊断和治疗的同时整合。实验结果表明,代表性探针LA4-1在细胞和AD小鼠模型中均表现出低细胞毒性和对Aβ聚集体的高灵敏度成像。值得注意的是,它分别抑制Aβ聚集和MAO-B活性达97%和89%。此外,LA4-1表现出良好的MAO-B选择性和抗氧化能力。我们的研究结果证实,LA4-1不仅具有卓越的Aβ成像能力,还展示了多功能且有效的多模态药物作用。这项研究进一步为开发用于AD的高效Aβ靶向治疗诊断剂奠定了基础。
本研究考察了不同套袋类型(未套袋、网袋和纸袋)如何影响果实的内部和外部品质。使用可见-近红外高光谱成像系统收集了307个苹果的光谱图像,并分析了颜色、大小、硬度、可溶性固形物含量(SSC)和香气的差异。比较了各种提取有效波长算法的有效性。使用各种机器学习算法开发了苹果品质检测模型,获得了性能最佳的模型CARS-MLR,所有指标的R均大于0.75。结果显示,基于套袋类型的品质指标存在显著差异,纸袋苹果的整体品质最佳——颜色更鲜艳、大小和硬度适中、香气浓郁。这表明,高光谱成像、特征选择算法和机器学习方法是苹果无损品质评估的有效方法。本研究为评估其他不同套袋类型果实的品质提供了有价值的见解。
水分显著影响茶树的生长和品质。传统的叶片水分检测方法通常对样本具有破坏性,且速度慢、劳动强度大。在本研究中,利用可见-近红外(VIS-NIR)光谱在500-870nm光谱范围内快速准确地检测茶叶的水分含量。实验材料为“龙井43”,分为两批。第一批由2022年4月采集的135个茶叶样本组成,第二批包括2024年4月采集的349个茶叶样本。FD + SNV + CARS + ε-SVR模型对2024年茶叶水分含量的预测效果最佳,R、R、RMSEC、RMSEP和RPD的预测效果分别为0.9676、0.903、0.0221、0.04和2.3367。然而,将构建的模型应用于2022年数据的预测结果R仅为0.138。为了提高模型的泛化能力,本研究提出了堆叠集成学习和基于实例的迁移学习。特别是迁移学习模型仅需要55个迁移样本,R最高为0.851。与需要60个样本的堆叠集成相比,R最高为0.85,实现了用更少的样本达到更好的预测效果。这些研究不仅证实了VIS-NIR光谱在评估茶叶水分含量方面的潜力,还研究了模型的迁移优化,有助于提高模型的泛化能力。
准确灵敏地检测尿酸、葡萄糖和乳酸等小分子代谢物在生物医学诊断和临床应用中至关重要。传统检测方法往往面临诸如程序复杂、处理时间长和灵敏度不足等限制。为应对这些挑战,我们开发了一种基于微孔阵列的表面增强拉曼散射(SERS)传感器,辅以卷积神经网络(CNN),用于生物测定中无生物毒性地检测组织间液(ISF)。该传感器采用3D打印设计,具有优化的提取微孔和传感空间的微孔配置,可提高液体提取率,同时将SERS底物的干扰降至最低。集成的CNN能有效处理拉曼光谱,实现对单个和混合成分的准确识别。该传感器对亚甲基蓝的检测限为10 M,相对标准偏差(RSD)值约为7%,确保了高灵敏度和稳定性。尿酸、葡萄糖和乳酸的校准曲线呈现出优异的线性(R≈0.99)。对于多组分样品,CNN辅助传感器的分类准确率超过99.38%,能有效识别和定量复杂混合物中的成分。在猪皮上的实际验证证明了该传感器对ISF分析物进行微创原位检测的能力。本研究突出了基于微孔阵列的SERS传感器作为一个强大的、生物相容的平台用于实时生物医学检测和多组分分析的潜力。其将先进传感技术与机器学习的创新整合为无创诊断和精准医学的未来发展铺平了道路。
通过光谱测量(紫外可见光谱、红外光谱、核磁共振氢谱和质谱)确定了新合成的基于咪唑的化学传感器(HL)及其碳酸盐加合物的组成。在甲醇-水(1:1 v/v)和HEPES缓冲液(pH 7.4,50 mM)中的不同阳离子和阴离子中检测了HL的受体性质,结果表明其对CO离子有选择性的荧光增强。通过Job曲线和Benesi-Hildebrand曲线确定,该受体与碳酸盐的结合化学计量比为1:1。加合物形成的同时检测限(LOD)和结合常数分别估计为5.43×10 M和8.23×10 M。通过质子核磁共振滴定实验进一步验证了主体-客体的结合性质。HL对碳酸盐的选择性和灵敏传感性质可由以下电子因素来解释:(i)C-C键的自由旋转受限;(ii)光诱导电子转移(PET)受阻。细胞成像研究表明,本探针无细胞毒性,且对哺乳动物细胞系(HepG2)中的CO具有化学传感器活性。
莫雷纳属包含热带海洋蓝藻物种,这些物种富含次生代谢产物,对竞争的造礁生物具有化感作用,从而威胁到珊瑚礁的健康。然而,很少有研究涉及这些参与化学介导的生态相互作用的关键化学物质的细胞定位和细胞外分泌。我们结合光谱学、显微镜技术、色谱法和化学分析来定位布氏莫雷纳中的主要次生代谢产物。共聚焦显微镜显示在蓝藻丝状体周围的黏液鞘中观察到蓝色发射模式——在囊泡内、细胞之间以及坏死组织中。布氏莫雷纳的粗提物通过高效液相色谱法进行分离,通过拉曼光谱分析的纯化级分呈现出表明潜在吡啶环作为主要峰的谱带,这可能对应于含氮酚类化合物或吡啶生物碱。拉曼图谱显示主要化合物在细胞内区域(类囊体膜上方)浓度最高,向外朝着黏液鞘逐渐降低。布氏莫雷纳细胞内主要化合物的位置表明存在一种动态化学防御系统,其中该化合物在类囊体膜附近生物合成并运输到黏液鞘,这一过程类似于在具有已知防御生态作用的海洋大型藻类中观察到的过程。拉曼光谱、傅里叶变换红外光谱和共聚焦显微镜分析的使用提供了全面的化学和形态学见解,这些见解对于专注于环境监测的研究通常至关重要。
利用螺环化机制开发的pH敏感荧光探针CBTOH,可用于生物系统中的精确pH监测和成像。在酸性条件下(pH 2 - 3.5),CBTOH发生开环,在611 nm处发射红色荧光,与中性和碱性条件相比,强度增加了119倍,这是由于螺内酰胺环断裂后分子内电荷转移增强所致。该探针具有出色的光稳定性、可逆性和对pH变化的选择性,受常见生物离子和氨基酸的干扰极小。在HeLa细胞和斑马鱼模型中的共聚焦荧光成像证实了其对溶酶体的特异性靶向以及对pH波动的敏感性,尤其是在酸性环境中。CBTOH有效地监测了药物诱导的内源性pH变化,如雷帕霉素诱导的变化,从而为研究与溶酶体活性相关的药物诱导的生理改变提供了一种新的方法。
血清荧光光谱法提供了一种快速简便的方法来评估蛋白质构象状态和代谢变化,使其在病理学诊断研究中具有很高的价值。在此,我们展示了血清荧光光谱法在前列腺癌诊断中的潜力。目前前列腺癌的诊断方法包括检测前列腺特异性抗原水平的血液检测、直肠指检、超声和磁共振成像检测。尽管这些方法被广泛应用,但这些成熟技术在特异性方面存在局限性,导致不必要的活检数量增加。基于血清荧光发射光谱分析,我们确定了一种新的潜在标志物——350nm激发下荧光光谱的不对称性(Asym350)用于前列腺癌诊断,该标志物在识别前列腺癌患者方面具有统计学上显著的判别能力(p<5×10)。这个基于荧光的标志物与前列腺特异性抗原水平和前列腺影像报告和数据系统(PI-RADS)评分一起被纳入一个分类模型。通过使用交叉验证来评估分类模型在各种特征集上的性能,当使用PI-RADS和Asym350的特征集时,我们获得了最高的F1分数0.91。这些发现强调了血清荧光光谱法在前列腺癌诊断中的能力,并提出了其转化为临床应用可行性的关键问题。
亚硝酸盐作为着色剂仅限于应用于肉制品中,过量食用可能会导致食物中毒并增加患癌风险。因此,开发简单灵敏的亚硝酸盐检测方法必不可少。以邻苯二胺、对氨基苯甲酸、硫酸和磷酸为前驱体,通过一步水热法制备了发射红色荧光的氮、磷、硫共掺杂碳点(R-CDs)。R-CDs的最佳激发波长和发射波长分别为567nm和632nm(荧光量子产率为0.23)。所制备的R-CDs在室温下具有良好的光稳定性。R-CDs对亚硝酸盐具有高选择性,响应时间为5分钟,可用于亚硝酸盐的荧光和比率吸收光谱双模式检测,荧光检测范围为5.00-67.50µM,检测限(LOD)为0.89µM。R-CDs在632nm处的荧光可被NO静态猝灭。随后,比率吸收法的检测范围为10.00-180.00µM,相关系数为0.9999,计算得出的LOD为0.27µM。最终,建立了基于R-CDs的智能手机和试纸传感方法,以实现对亚硝酸盐的简单检测。所构建的基于荧光和吸收光谱的传感方法作为一种快速简便的策略用于日常生活中亚硝酸盐的检测,具有广阔的应用前景。
在适当条件下储存的药品质量和疗效至关重要。本研究使用先进的光谱技术,考察了长期塑料储存对极稀乙醇基增效(EP)药物的影响。四种药物,山金车、毒漆树、欧洲天仙子和颠茄,在超高(20℃,1M)和中高(30℃,200C)效价下,分别储存在玻璃和塑料容器中一个月。储存后,进行了抗氧化活性(DPPH测定)、pH值和光谱分析(ATR-FTIR、拉曼和DLS)。玻璃储存的药物随着效价升高,抗氧化活性和zeta电位增加,而塑料储存的样品则呈下降趋势。电导率与zeta电位呈负相关,玻璃储存的药物电导率降低约41.91%,而塑料储存的样品电导率增加约36.29%。中红外光谱显示,玻璃储存的药物中,O-H伸缩振动出现蓝移(约4-14cm),H-O-H弯曲振动出现红移(约2-3cm),表明在高效价下分子间氢键较弱。相比之下,塑料储存的药物出现相反的位移(约2-17cm),这意味着在存在微塑料的情况下,由于羰基-水相互作用,氢键受到更多限制,破坏了天然的乙醇-水氢键网络。远红外光谱显示,玻璃储存的药物有焓增(约45.34%),而塑料储存的样品有焓减(约56.60%),证实了由于微塑料浸出,天然水网络结构不稳定。我们的研究结果表明,塑料容器通过改变氢键网络稳定性和电性能,损害了所研究药物的疗效。需要对不同塑料等级和储存时间进行进一步研究,以验证这些发现,并探索此类药物长期储存的经济有效替代方案。
早期获取棕榈果现场的水分、油脂和游离脂肪酸(FFA)含量信息,对于确定新鲜果串(FFB)的商业价值以及维持油棕质量至关重要。传统方法具有破坏性、劳动强度大、单一目标、成本高且耗时。因此,本研究旨在开发一种使用近红外(NIR)光谱法对油棕果实品质进行多参数预测的方法。经验小波变换(EWT)和高斯过程回归(GPR)被用作一种新型化学计量学方法。从芝卡巴扬油棕种植园收集了总共750个不同成熟度的特尼拉品种(Elaeis guineensis Jacq. var. tenera)的果实样本。每个样本使用NIR仪器在1000 - 1500纳米波长下进行扫描以获取吸光度数据。应用EWT将NIR光谱分解为经验模态,并使用GPR建立回归模型进行拟合。基于数值分析,EWT和GPR的组合分别产生了水分、油脂和FFA含量的均方根误差(RMSE)值为2.877±0.900%(R = 0.955±0.018)、1.256±0.543%(R = 0.942±0.030)和0.065±0.04%(R = 0.964±0.044)。结果表明,该模型无需溶剂或试剂即可准确预测油棕果实的内部品质,支持环境可持续性。这些有望通过改善质量控制、优化收获时机以及促进整个价值链的可持续性来加强油棕生产管理。
脂肪含量和酸值是评估核桃品质的关键指标。本研究采用两种高光谱成像技术(可见近红外(VNIR)和近红外(NIR)),结合低层次和中层次融合策略(LLF和MLF),对不同储存期的这些指标进行预测,并据此对核桃进行分类。在预处理和特征波长选择后,建立了包括偏最小二乘回归(PLSR)、粒子群优化支持向量回归(PSO-SVR)和随机森林(RF)在内的预测模型。结果表明,与单个数据相比,数据融合策略在两个指标上均表现出更好的性能。基于结合无信息变量消除(UVE)的RF,MLF策略在预测脂肪含量方面表现最佳,R为0.8 ***,RMSEP为0.0083,RPD为2.7797。基于结合无信息变量消除-竞争性自适应重加权采样(UVE-CARS)的PSO-SVR,LLF策略在预测酸值方面表现出最佳性能,R为0.9694,RMSEP为0.0369,RPD为5.7202。使用VNIR和NIR光谱数据,对储存6个月和18个月的核桃进行储存期分类,准确率达到100%。这些发现突出了高光谱成像结合数据融合在快速、无损核桃品质评估和储存期识别方面的巨大潜力。 (注:原文中“R of 0.8706”的“0.8706”处有乱码,已用“***”代替)
基于硼二吡咯亚甲基(BODIPYs)的分子荧光转子因其在许多相关疾病中的关键作用而被广泛研究用于监测环境粘度变化。尽管已经采用了各种策略,但通过一步反应实现具有大斯托克斯位移的红移BODIPY基荧光转子仍然是一个具有挑战性的课题,因为其合成过程繁琐。在本论文中,首次通过一步反应,使用1,7-二甲基无取代的中位噻唑/苯并噻唑BODIPYs构建了具有大斯托克斯位移的红移荧光转子,可用于监测线粒体定位的细胞粘度变化。这种策略设计的1,7-二甲基无取代的中位噻唑/苯并噻唑BODIPYs可以通过一步反应制备,发射波长超过600 nm,斯托克斯位移约为70 nm。中位噻唑探针3和中位苯并噻唑探针5都可以通过荧光开启效应检测粘度变化,检测限低,这取决于在粘性系统中有效限制中位噻唑的旋转。细胞实验进一步验证了探针3对HeLa细胞几乎没有细胞毒性,并且相对于溶酶体具有较好的线粒体靶向能力,进一步用于检测脂多糖(LPS)和莫能菌素诱导的细胞内粘度变化。因此,通过一步反应制备的红移1,7-二甲基无取代的中位噻唑BODPY基荧光探针可作为灵敏的分子转子,用于可视化HeLa细胞线粒体中的粘度变化。
本研究的目的是调查活细胞对病毒入侵的实时反应。我们分别使用重组慢病毒(rLV)和HEK293细胞作为模型病毒和模型细胞。rLV不能在细胞中繁殖,但能将其基因(在本案例中为绿色荧光蛋白,GFP)整合到宿主细胞的基因组中。在病毒入侵活动期间,使用拉曼光谱和主成分分析(PCA)监测细胞中的分子组成变化。受病毒感染的细胞在感染后仅2小时就显示出主要归因于蛋白质的分子变化。这表明这些分子变化代表了细胞对病毒入侵的非常早期的反应,因为这些变化发生得太早,以至于无法激活由病毒诱导的反应。当活细胞遭遇第二次病毒感染时,我们也成功检测到了它们的分子变化。结果有力地表明,细胞具有一种机制来检测病毒对其身体的入侵,并对入侵发起快速反应。
过氧亚硝酸根(ONOO)不仅是一种关键的活性氧(ROS),也是一种重要的活性氮(RNS),其在体内的异常表达水平与许多疾病的生理和病理发作密切相关。在此,采用荧光共振能量转移(FRET)策略成功开发了一种比率荧光传感器QL-RH,其中喹啉和呫吨染料分别用作荧光共振能量转移支架的供体和受体。当QL-RH通过拜耳-维利格氧化反应与ONOO反应并触发荧光比率响应时,比率值增加50倍,并且具有低至28.7 nM的良好检测限(LOD),这为检测ONOO提供了一种化学特异性灵敏分子工具,并且通过紫外可见分光光度计和荧光分光光度计证实了具有比率特性的QL-RH。此外,QL-RH还通过脂多糖(LPS)刺激成功用于活细胞和斑马鱼中ONOO的成像,其分别增加了约9倍和8倍,在紫外线照射的小鼠模型中增加了约8倍,这表明QL-RH可以成为监测紫外线诱导的皮肤衰老过程的有用工具。
三维(3D)细胞培养模型作为重现体内肿瘤微环境的强大工具,正越来越受到关注,它为传统二维(2D)培养提供了一种更具生理相关性的替代方法。在这项工作中,使用HepG2细胞系重建了三维肝细胞癌(HCC)模型,并对其随时间变化的特征进行了研究。基因表达分析揭示了与肿瘤发展关键适应阶段相关的增殖标志物(PCNA、Ki-67)、分化标志物(AFP)、缺氧标志物(HIF-1α)和凋亡调节因子(BBC3)的变化。结果显示在G0/G1期有明显的细胞积累,表明向静止状态的转变。拉曼分析评估了随时间变化的生化组成和细胞反应,通过检测特定分子振动实现对代谢状态的非侵入性监测。发现拉曼光谱变化与参与增殖(PCNA、KI-67)、分化(AFP)、缺氧(HIF-1α)和凋亡(BBC3)的关键基因之间存在明显相关性,从而为三维HepG2球体的生理演变提供了见解。因此,拉曼方法可能是实时跟踪肿瘤适应性和微环境应激反应的有价值工具。
精氨酸(Arg)和抗坏血酸(AA)是生物必需化合物,在人类发育和抗病能力中起关键作用。因此,快速有效地检测这些分子至关重要。在本研究中,通过低共熔溶剂催化合成了5-苯基-1,3,4-噻二唑-2-胺和2-((5-苯基-1,3,4-噻二唑-2-基)亚氨基)甲基)苯酚(以下简称探针L)。随后,将探针L用作检测Arg和AA的荧光传感器。具体而言,在Arg存在下,探针L溶液的颜色从黄色变为橙红色,与AA相互作用时褪色。然而,在荧光光谱下,加入Arg和AA后,探针L溶液的荧光强度显著增加。关于时间对探针L识别影响的实验表明,Arg和AA可在不同时间被识别。在关于pH对探针L识别影响的实验中,结果表明在4-12的pH范围内可有效检测到Arg和AA。Job曲线分析表明,化学计量比为2:3(探针L:Arg)和3:2(探针L:AA)结合。Arg和AA的结合常数分别测定为7.43×10⁶ M和14.11×10⁶ M。检测限(LOD)分别计算为1.05×10⁻⁷ M和9.37×10⁻⁷ M。总之,这项工作展示了由低共熔溶剂促进的探针L的合成,并确立了其作为用于Arg和AA的高选择性和稳定光学传感器的实用性,这对生物医学和环境监测具有重要意义。
在本研究中,我们展示了一种新型的半菁染料,它具有4-羟基苯部分作为供体。已对该染料在液态和气态下传感氨的能力进行了探索。使用紫外可见光谱研究了染料与氨之间的传感机制和动力学相互作用。此外,还进行了核磁共振氢谱、傅里叶变换红外光谱和高分辨率质谱分析以阐明其机理方面。密度泛函理论测量(高斯16)的理论计算进一步支持了这些发现。该传感器的检测限低至0.263 ppm,是迄今为止报道的最低值。通过微生物研究验证了其实际效用,其中该染料成功监测了作为细菌生长标志物的氨释放。值得注意的是,这是文献中记载的第一个用于检测液态氨的传感器。通过微生物研究证实了其在现实世界中的适用性,其中该染料有效地跟踪了作为细菌生长指标的氨释放。
由多种呼吸道病原体引起的急性呼吸道感染(ARIs)是一项重大的全球公共卫生挑战。准确及时地诊断呼吸道病原体感染对于有效治疗至关重要。在此,我们展示了一个多功能诊断平台,该平台将便携式衰减全反射傅里叶变换红外(ATR-FTIR)光谱与先进的化学计量学方法相结合。使用来自两个临床队列的鼻咽拭子样本,我们证明了该平台区分由严重急性呼吸综合征冠状病毒2(SARS-COV-2)、肺炎支原体、乙型流感引起的感染以及健康对照的能力。该平台能够在单次测量中同时检测呼吸道病原体感染并进行生理特征分析。应用红外(IR)吸光度比法来识别有助于更全面临床诊断的有意义生物标志物。此外,我们提出了一种重要波数范围重叠(IWRO)方法来量化各种生物分子(包括脂质、蛋白质、核酸和碳水化合物)的相对贡献。这些基于多类分子特征的互补分析方法有助于探索感染引起的生理变化和病理机制。使用偏最小二乘判别分析(PLS-DA)验证诊断性能,在两个队列中分别达到了95.6%和90.9%的分类准确率。这项工作显著扩展了红外光谱在同时检测和分析多种呼吸道病原体方面的应用,为病原体-宿主相互作用提供了关键见解,对未来大流行防范具有重要意义。
前列腺特异性抗原(PSA)是一种由前列腺上皮细胞产生的丝氨酸蛋白酶,是前列腺相关疾病的关键生物标志物。虽然目前用于检测前列腺异常的诊断方法,如PSA检测、直肠指检、前列腺活检等被广泛使用,但它们往往具有侵入性,选择性差且耗时。因此,需要一种改进和简化的PSA检测策略。在本研究中,我们报告了一种专门设计用于靶向PSA的新型肽P1。我们探索了内源性色氨酸荧光光谱法(TFS)来验证P1与PSA之间的结合亲和力。这种方法虽然简便,但尚未广泛用于结合研究。PSA中存在7个色氨酸残基,其中2个位于其结合位点,这促使我们探索TFS以识别PSA - P1相互作用。从一种PSA特异性单克隆抗体设计了四种新型合成肽类似物,其中P1(TFTTYYILDYA)对PSA表现出最强的结合亲和力(-11.8千卡/摩尔)。当用不同浓度的P1滴定PSA时,色氨酸荧光光谱法(TFS)随后验证了P1对PSA的强结合亲和力,表观解离常数(K)为52 nM;当用不同浓度的PSA滴定P1时,K为0.23 μM。二级结构分析表明,P1采用β - 折叠构象并表现出显著的热稳定性,可承受高达205℃的温度,这使其成为用于可靠检测PSA的稳定生物受体。结果表明,P1作为生物传感器中PSA特异性生物受体具有巨大潜力。这是同类研究中的首例。它确定P1是一种可行、经济高效、高度稳定、坚固且具有选择性的肽,极有可能成为用于识别各种生物基质中PSA的无标记生物受体。其与PSA形成稳定、选择性和生物相容性相互作用的能力使P1成为开发无创高效检测系统的关键组成部分。