文献检索文档翻译深度研究学术资讯

Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录
Suppr
超能文献
应用&插件
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
定价
高级版会员购买积分包购买API积分包
服务
文献检索文档翻译深度研究API 文档MCP 服务
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2026

文献速览

嵌入冰中的球形固体的超声成像。

UltrasonicsPMID:40789227

当将具有双曲面的刚性致密固体置于液体介质中,并用穿过液体传播的波照射其表面时,压缩超声波向该固体的传输会受到阻碍。只有当入射超声波束接近垂直于表面时,才有可能实现可测量的功率传输。当通过线性换能器阵列激发和检测波时,这种条件很难实现,这限制了根据阵列数据形成固体横截面图像的可能性。在此表明,如果水被冻结,固体内部可以以更高的保真度成像。多晶冰中压缩波的高速(约4000米/秒)及其刚性特性确保超声波可以在很宽的入射角范围内透过表面传播。然而,由于双曲率的存在,形成超声波束的光线在进入固体后可能会在阵列方位平面之外发生偏转。因此,从线性阵列数据获得的二维图像可能与光线路径的完整三维结构不一致。对固体球体这种特殊情况的这一现象分析表明,该图像在很好的近似下对应于球体中与方位平面平行且与之保持一定距离的一个截面。该距离随着表面法线相对于方位平面所形成的角度增大而增大,同时随着冰与球体材料之间的速度对比度降低而减小。虽然预计这种特性不适用于更复杂的表面,但本研究中使用的基于光线的框架适用于更一般的表面构型,并且可用于将图像与固体结构相关联。这些发现与具有复杂几何形状的金属部件的检测相关,这在无损检测领域是一个长期存在的挑战。

查看详情

金属基纳米材料在口腔感染性疾病中的作用机制及治疗应用:当前进展与未来展望

BiomaterialsPMID:40587916

口腔感染性疾病,包括龋齿、牙髓炎、牙周炎、种植体周围炎和颌骨骨髓炎,是牙科领域最常见的病症,主要由细菌感染引起。传统的治疗方法,如机械清创和抗生素治疗,由于细菌耐药性、感染控制不足以及无法有效促进组织再生而面临局限性。金属基纳米材料已成为应对这些挑战的有前景的候选材料,具有广谱抗菌活性、免疫调节和再生特性。本综述对含金属纳米材料在治疗口腔感染性疾病方面的治疗潜力进行了深入分析。探讨了它们的抗菌机制,包括膜破坏、氧化应激诱导和代谢干扰。此外,我们讨论了它们通过干细胞分化和细胞外基质重塑在调节炎症和促进组织再生中的作用。对这些纳米材料在龋齿预防、牙髓治疗、牙周治疗和种植学中的应用进行了严格审查。最后,我们强调了关键挑战,包括生物安全问题、临床转化障碍和材料优化策略。通过总结近期进展和新兴趋势,本综述旨在为开发用于改善口腔保健的创新纳米疗法提供见解。

查看详情

嵌入FeN的石墨烯中位点邻近效应在氧还原反应中的作用

J Colloid Interface SciPMID:40845450

在单原子催化剂(SACs)中,活性位点可以紧密排列而不形成直接化学键,从而使其催化行为能够通过位点间相互作用进行调控。然而,这些位点邻近效应背后的原子级机制仍知之甚少。在此,我们采用恒电势密度泛函理论计算方法,系统地研究了位点邻近性对嵌入吡啶型氮掺杂石墨烯中的铁单原子催化剂(FeN SACs)的氧还原反应(ORR)活性的影响。构建了一系列双位点模型(FeN DSACs),包括原始构型、轴向OH配位构型和轴向O配位构型,以及它们相应的孤立模型。热力学分析表明,与实验报道的体系相比,几乎所有的FeN DSACs都表现出增强的稳定性或相当的稳定性。更重要的是,与孤立的类似物相比,位点邻近性显著调节了DSACs中铁中心的ORR活性,对于轴向OH配位的FeN DSACs,活性增强高达10倍。此外,Fe的d带中心和电荷态与ORR过电位呈线性相关,而Fe的自旋磁矩与过电位呈火山型关系,表明这些性质是ORR活性的有效描述符。这些发现为FeN SACs对ORR的位点邻近效应提供了有用的见解,并突出了其作为高性能单原子电催化剂设计原则的潜力。

查看详情

羟基工程化银纳米颗粒在宽电位窗口下将电催化CO还原为CO的过程中实现了近100%的法拉第效率。

J Colloid Interface SciPMID:40840345

将电催化CO还原(ECOR)为CO提供了一种很有前景的策略,既能降低大气中的CO水平,又能生成用于工业应用的增值化学原料。然而,在实际操作条件下,当前催化剂的活性和法拉第选择性不足,限制了ECOR的广泛应用。我们在此开发了一种嵌入环糊精的银纳米颗粒(AgNPs-CD)杂化材料,其具有丰富的表面羟基,可作为将ECOR转化为CO的高效催化剂,兼具高活性和优异的选择性。AgNPs-CD在相对于可逆氢电极(RHE)为-0.4 V的超低电位下实现了97.6%的卓越CO法拉第效率(FE),并在较宽的电位窗口(相对于RHE为-0.4至-1.0 V)内保持93.5%至99.8%的高FE值,同时提供超过200 mA cm的高CO分电流密度(J)。原位电化学光谱和理论计算表明,AgNPs-CD以较低的吉布斯自由能稳定*COOH,并抑制具有高能垒的析氢反应(HER),从而实现对CO转化为CO的高活性和高选择性。这项工作不仅可以提供一种提高ECOR制CO性能的有效策略,还能为设计和开发具有低过电位和高电流密度的新型电催化剂提供思路。

查看详情

吸入性纳米酶对急性肺损伤中cGAS-STING通路的调控

BiomaterialsPMID:40554963

急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是危及生命的病症,其特征为严重炎症、氧化应激以及肺泡-毛细血管屏障的破坏。当前治疗方法的疗效有限,凸显了针对关键病理机制的新方法的迫切需求。活性氧(ROS)的过度产生以及由此引发的炎症反应级联放大是ALI/ARDS进展的关键因素。在此,我们基于具有良好生物相容性和出色ROS清除能力的可吸入CoAl-LDH(CAL)纳米片,成功调节了免疫稳态介导的炎症反应,以减轻ALI。转录组分析结合单细胞测序再分析首次揭示,CAL与受损DNA结合并有效抑制cGAS-STING途径介导的炎症反应。此外,将cGAS-STING途径抑制剂C176掺入CAL中可大大增强这种抑制作用,以减轻炎症并减轻肺组织损伤。这些结果表明,用多功能纳米片调节免疫稳态可能是临床治疗ALI/ARDS的一种有前景的范例。

查看详情

用于长循环高能锂离子电池的无钴纳米单晶富锂锰基层状正极材料

J Colloid Interface SciPMID:40840343

尽管高能量密度的富锂层状氧化物由于其极高的能量密度(≥1000 Wh kg)而成为一种很有前景的正极材料,但其商业化在很大程度上受到晶格氧逸出、电压衰减以及循环过程中寿命较短的阻碍。单晶工程被认为是解决这些问题的有效策略。然而,低成本的无钴富锂层状正极主要通过熔盐辅助法合成,随后进行额外的洗涤和再煅烧,这不仅是一种多步骤方法,而且缺乏经济性和通用性。在此,我们通过使用混合锂盐的简单固态反应,将纳米单晶工程引入到低成本无钴富锂层状正极材料的合成中。与多晶正极相比,单分散纳米单晶有利于锂在电解质和正极之间的扩散。受益于这一特性,单分散单晶形态可以抑制氧逸出,限制相变以及由此产生的微裂纹,并减少电解质侵蚀副反应(过渡金属离子溶解/表面结构退化)。这种单晶富锂正极材料具有较高的首次库仑效率(77.97%)、出色的倍率性能以及在1C倍率下循环200次后92.7%的优异循环稳定性。因此,这种新的单晶工程技术在合成用于长寿命高能量密度锂离子电池的富锂正极方面显示出普遍应用的潜力。

查看详情

一种用于预防生物膜的三功能涂层:整合防污、光热杀灭和群体感应干扰功能。

J Colloid Interface SciPMID:40795591

细菌生物膜相关感染在生物医学领域构成了重大挑战,尤其是在医疗设备和植入物的背景下,传统治疗方法往往难以对抗成熟的生物膜。为了克服这一局限性,开发了一种抗生物膜涂层,它包含三个功能组件:源自蜡烛烟灰(CS)的碳纳米颗粒、甲基丙烯酸2-羟乙酯(HEMA)和3-(丙烯酰胺基)苯硼酸(APBA)的亲水性和pH响应性共聚物刷,以及天然群体感应抑制剂(QSIs)。CS底物的碳纳米结构具有固有的光热转换特性,而其高表面积有利于高效的化学功能化。共聚物设计策略性地结合了形成抗细菌水合层的亲水性聚(HEMA)域,以及通过pH敏感的硼酸酯键与植物来源的QSIs(槲皮素或黄芩苷)共价结合的APBA部分。这些组件的组合使涂层能够通过三种协同机制抑制生物膜形成:水合屏障最初抑制细菌粘附,随后通过近红外激活后的光热转换消除表面结合的病原体,以及酸性微环境触发的QSIs释放破坏生物膜成熟。该涂层对铜绿假单胞菌和金黄色葡萄球菌均表现出持续的抗生物膜功效,同时在各种生物医学材料上保持哺乳动物细胞活力和底物兼容性。通过精确的材料工程整合物理屏障、热消融和群体感应干扰,这种涂层为预防临床环境中生物膜相关感染提供了一种有前景的解决方案。

查看详情

一种新型聚醚醚酮(PEEK)造口装置与人表皮角质形成细胞的生物相容性。

Biomater AdvPMID:40818332

手术造口是许多医疗状况下的重要干预措施,然而,它可能会引发身体并发症,如造口周围皮肤刺激。医用造口装置(MSD)是减轻此类并发症的一种潜在治疗方法。聚醚醚酮(PEEK)因其在正畸和骨科应用中已确立的生物相容性,是用于植入式MSD的一种有前景的材料。然而,尚未根据ISO 10993-5:2009指南评估其与人表皮角质形成细胞的细胞相容性。本研究旨在评估一种新型PEEK MSD与人角质形成细胞(HaCaT细胞)的生物相容性。将细胞培养在PEEK圆盘、表面改性的PEEK(m-PEEK)和聚乳酸(PLA)上。通过扫描电子显微镜(SEM)研究表面形貌以评估表面粗糙度(S,S)和水接触角(WCA)。与PLA和未改性的PEEK相比,m-PEEK的S和WCA增加。使用CyQUANT™和AlamarBlue™测定法评估细胞增殖和活力,在PLA、PEEK和m-PEEK之间未观察到显著差异。使用粘附试验评估细胞粘附,m-PEEK显示出比PLA显著更高的细胞粘附(p < 0.05),通过SEM成像确认细胞附着。使用Luminex免疫测定法对上清液进行细胞因子分析显示,在72小时时,ISO 10993-20:2006指南中列出的六种细胞因子中的两种(IL-1α和IL-6)在PEEK存在下升高。这些发现表明PEEK无细胞毒性且与人角质形成细胞生物相容。有必要进行进一步研究以评估PEEK与结肠细胞、3D皮肤模型以及用于MSD应用的体内系统(包括慢性炎症反应)的相容性。

查看详情

具有可调谐等离子体热点的压电驱动自供电传感器,用于增强表面增强拉曼光谱性能。

J Colloid Interface SciPMID:40795590

电调制表面增强拉曼光谱(E-SERS)技术可以有效提高拉曼信号强度。与传统的E-SERS相比,自供电E-SERS传感器通过能量转换提供电场,这减少了对外部电源的依赖,从而促进了便携式实际样品检测的发展。在此,将具有多巴胺功能化还原氧化石墨烯(rGO@PDA)的高性能压电锆钛酸铅(PZT)嵌入聚偏二氟乙烯-三氟乙烯(PVDF-TrFE)基体中,创新性地用于E-SERS技术。特别是,通过对PVDF-TrFE/PZT-rGO@PDA/Ag自供电传感器施加外部压力,可以有效增强表面局域电磁场,该电磁场与银纳米颗粒(NPs)的局域表面等离子体共振(LSPR)效应相结合,实现高度可调的信号增强。作为概念验证,通过按压基底产生了电压和电流信号,并且对罗丹明6G(R6G)和甲基橙(MO)等分子也实现了拉曼信号增强。该自供电传感器对多种探针分子表现出超高灵敏度和优异的重现性,尤其是福美双,其检测限低至10⁻⁹ M,测定的低变异系数为8.5%。此外,该基底通过按压成功检测到鱼皮上10⁻⁸ M的孔雀石绿(MG)杀菌剂残留和鸡胸肉中10⁻⁸ M的磺胺间甲氧嘧啶(SMM)抗生素残留,证明了其在食品污染物监测中的巨大应用潜力。

查看详情

噬菌体在发酵蔬菜中的生态存在及功能作用

Food MicrobiolPMID:40889848

发酵蔬菜因其独特的风味和营养价值而受到消费者的广泛青睐,其品质特性与微生物群落动态密切相关。高通量测序技术的最新进展揭示了发酵蔬菜微生物群落中丰富的噬菌体资源。这些病毒成分通过调节微生物群落结构和功能,显著影响发酵过程和产品特性。然而,通过噬菌体介导的调控来优化蔬菜发酵过程的研究仍处于起步阶段。本研究系统总结了发酵蔬菜中微生物群落的组成特征和动态模式。我们综述了发酵蔬菜中噬菌体多样性和功能特性的最新研究进展。此外,通过整合多组学数据,我们深入了解了噬菌体、宿主微生物群和代谢产物之间复杂的相互作用网络。结果表明,噬菌体通过裂解-溶源循环介导微生物群落演替,以及通过编码的辅助代谢基因参与关键风味化合物的生物合成,精确调控发酵过程。最后,我们梳理出一个结合宏基因组学和培养组学的综合技术框架。本研究为理解噬菌体在发酵蔬菜中的功能机制提供了新的见解,为基于噬菌体调控开发精准发酵技术提供了理论基础。

查看详情

通过使用由ZIF-8金属有机框架材料和丝素蛋白/聚己内酯纳米纤维构建的双协同封装系统来实现姜黄素的递送与释放,以加速伤口愈合。

Biomater AdvPMID:40774053

通过静电纺丝技术开发和设计具有仿生结构和多功能特性的新型纳米纤维敷料(NFD),已引起伤口治疗领域的广泛关注。在本研究中,首先将姜黄素(Cur)掺入沸石咪唑酯骨架-8(ZIF-8)中,生成Cur@ZIF-8纳米颗粒,其呈现出均匀、一致且近乎相似的菱形十二面体结构,平均直径约为190nm。然后通过静电纺丝策略将Cur@ZIF-8负载到丝素蛋白(SF)/聚己内酯(PCL)混合纳米纤维中,以获得一种NFD。另外制备了三种不同的NFD,即SF/PCL、SF/PCL/ZIF-8和SF/PCL/Cur作为对照组。发现所有四种不同的NFD均呈现出均匀且无珠的形态。其中,SF/PCL/Cur@ZIF-8 NFD表现出优异的机械性能、高孔隙率(83.8±3.7%)和吸水率(292.4±9.5%)。重要的是,SF/PCL/Cur@ZIF-8 NFD显示出可控的Cur释放曲线,符合Krosmeyer-Peppas模型。体外细胞实验表明,SF/PCL/Cur@ZIF-8 NFD明显促进了人皮肤成纤维细胞(HDF)的增殖和黏附。此外,SF/PCL/Cur@ZIF-8 NDF还表现出很强的抗菌活性,对大肠杆菌和金黄色葡萄球菌的抑制率分别为83.2±1.7%和80.2±4.7%。在体内,SF/PCL/Cur@ZIF-8 NFD不仅在小鼠肝出血模型中显著减少了出血量,还通过促进胶原蛋白生长和再上皮化明显加速了伤口愈合(约99%)。本研究表明,通过金属有机框架(MOF)合成与静电纺丝相结合产生的SF/PCL/Cur@ZIF-8 NFD在伤口治疗和皮肤组织工程应用中显示出巨大的潜力。

查看详情

一种用于增强P2/O3双相层状氧化物阴极储钠性能的残余碱去除、TiO涂层和Ti掺杂三合一策略。

J Colloid Interface SciPMID:40812059

不稳定的表面/界面结构以及严重的不可逆相变极大地阻碍了钠层状氧化物的商业应用。在此,通过将NaMnNiCuO浸入由钛酸四丁酯、乙酸和乙醇混合而成的特制溶液中,随后进行固相烧结,设计出了一种TiO包覆且Ti掺杂的P2/O3双相NaMnNiCuO正极材料。在浸渍过程中,使用低浓度乙酸去除材料表面的残留碱,并在表面吸附一层钛酸四丁酯。在随后的高温烧结过程中,形成了TiO保护层,同时Ti元素掺杂到材料中,这保护了材料免受HO、CO侵蚀以及电解质腐蚀,并扩大了层间距。值得注意的是,Ti掺杂的效果降低了Mn的比例并消除了不可逆的P3 - O″3相变,原位X射线衍射对此进行了有力验证。这种改性后的材料在1.5 - 4.2 V电压范围内,在1C(1C = 150 mA g)下200次循环的容量保持率为90.02%,相较于原始的NaMnNiCuO(72.5%)提高了24.2%。此外,优化后的材料具有优异的倍率性能,在6C时保持74.9 mAh g的放电容量,而未改性的对应物在相同倍率下仅达到63.8 mAh g。

查看详情

间充质干细胞膜伪装的介孔聚多巴胺通过减轻氧化应激介导的神经炎症用于帕金森病治疗

BiomaterialsPMID:40627962

帕金森病(PD)中活性氧(ROS)的过度积累会导致氧化应激,进而引发神经炎症并加速疾病进展。为了解决这一问题,我们开发了mPDA@MSC,这是一种由包裹间充质干细胞膜(MSCm)的介孔聚多巴胺(mPDA)纳米颗粒组成的纳米系统,它具有清除ROS的特性。mPDA结构显著增强了ROS清除和抗炎活性,而表面包裹的MSCm能够有效地穿越血脑屏障并靶向PD大脑中的病变部位。体外和体内研究均表明,mPDA@MSC通过多种机制发挥抗帕金森病作用,包括清除ROS、调节线粒体功能障碍以及促进小胶质细胞表型从促炎向抗炎转变。这导致多巴胺能神经元损伤的逆转、α-突触核蛋白(α-syn)产生的抑制以及行为缺陷和其他表型的改善。这些发现突出了mPDA@MSC作为PD治疗剂的潜力,并引入了一种新的抗PD治疗方法。

查看详情

解析由核心细菌驱动的金鲳鱼发酵过程中挥发性风味动态发展的代谢网络:多组学联合分析

Food MicrobiolPMID:40889856

发酵金鲳鱼风味的形成是一个复杂的过程。本研究通过多组学技术探索了发酵金鲳鱼风味的形成模式。共检测到71种挥发性化合物。大多数挥发性化合物的含量随发酵时间增加,如1-辛烯-3-醇、(E,E)2,4-己二烯醛、庚醛、乙酸异戊酯、2-甲基-1-丙醇。在种水平上,发酵结束时,默氏柠檬酸杆菌(32.25%)、土壤葡萄球菌(8.10%)、脱羧勒克菌(11.28%)、天空葡萄球菌(17.10%)和武侯肠杆菌(16.25%)是优势菌。所有样品中共检测到307种代谢物和449种脂质分子,其中125种代谢物和97种脂质被鉴定为差异化合物。加工过程主要涉及12条代谢途径。相关性分析表明,差异脂质和代谢物可通过优势菌的相关代谢活动转化为挥发性化合物。本研究为发酵金鲳鱼的标准化生产提供了理论依据。

查看详情

掺杂与界面工程促进二维/二维Sn-InS/CdS Z型异质结上的空间电荷分离与转移以实现高效光解水制氢

J Colloid Interface SciPMID:40812057

二维(2D)β-InS具有光谱响应宽、导带位置合适、载流子迁移率高和毒性低等显著优点,在光催化制氢方面显示出巨大潜力。然而,其高电荷复合率严重限制了其在光催化中的实际应用。在此,我们采用杂原子掺杂和界面工程策略,将CdS纳米片原位沉积在掺锡的InS上,构建具有硫共享界面的超薄2D/2D Sn-InS/CdS Z型异质结。这种独特的结构不仅增强了界面相互作用,还建立了直接的Z型电荷转移途径,显著抑制了电子-空穴复合,同时加速了载流子迁移。同时,锡掺杂使InS的带隙变窄,导致光谱红移,拓宽了可见光吸收范围并增强了光催化稳定性。优化后的Sn-InS/CdS异质结(SIC3)在可见光下实现了5.119 mmol·g·h的显著析氢速率,分别比纯CdS和Sn-InS提高了66.8倍和37.0倍。此外,其在420 nm处的表观量子效率达到5.1%。此外,实验表征和密度泛函理论计算证明了Z型异质结光催化机理。这项工作表明,金属掺杂和界面工程的双重策略为设计用于高效太阳能制氢的稳定超薄异质结光催化剂提供了一种有效方法。

查看详情

氧/甲基改性氮化碳作为一种高效的无金属光催化剂,通过过一硫酸盐活化去除酚类污染物。

J Colloid Interface SciPMID:40834813

用于过一硫酸盐(PMS)活化的无金属光催化剂为水净化提供了一种可持续的方法,尽管实现高效率仍然具有挑战性。在此,我们报道了一种氧/甲基改性的氮化碳(OMCN)作为去除酚类污染物的高效PMS活化剂。通过尿素和丙二酸二甲酯的简便一锅热共聚,对氮化碳的电子结构进行了设计,以产生强内部电场,显著增强电荷分离。与单独的氧改性氮化碳(OCN)和甲基改性氮化碳(MCN)相比,OMCN表现出更强的内建电场。优化后的OMCN2光催化剂具有更窄的带隙、增强的PMS吸附能和降低的PMS裂解活化势垒。因此,可见光驱动的PMS(Vis-PMS)/OMCN2体系在90分钟内实现了苯酚的完全降解,大大优于Vis-PMS/CN体系。该催化剂在多个循环中表现出优异的稳定性,连续四次运行后保留了其初始催化活性的88.1%,同时保持了较宽的pH耐受性。机理研究表明,硫酸根主导降解过程。当集成到连续流膜反应器中时,该系统在270分钟内以205 L m h的水通量保持完全的污染物去除。综合毒性评估证实了处理后废水的有效解毒。这些发现为无金属光催化剂建立了一个合理的设计框架,该框架有效地将太阳能利用与过硫酸盐活化相结合,以实现可持续的水处理。

查看详情

用于在温和条件下捕获CO和进行环加成反应的离子液体和单金属离子功能化共价有机框架

J Colloid Interface SciPMID:40819454

捕获的一氧化碳的环境友好型转化对于全球可持续发展至关重要。然而,由于一氧化碳的热力学稳定性和动力学惰性,在常压下将其直接转化为增值化学原料仍然具有挑战性。在此,我们报道了一种新型的具有低催化能垒的催化剂,它是通过对超临界二氧化碳活化的亚胺连接的三嗪基共价有机框架(TAPT-COF)进行后修饰而合成的,该修饰通过离子液体(IL)的共价连接以及锌离子在其孔内的配位实现。所得催化剂称为IL-Zn-COF,在298 K时表现出31.2 mg g的一氧化碳吸附容量,能够在活性位点附近富集一氧化碳并支持一氧化碳的直接转化。因此,IL-Zn-COF在1 bar和60°C下无需助催化剂即可实现99.0%的高环氯代烯丙基碳酸酯产率。实验结果和密度泛函理论(DFT)计算证实,锌和溴离子的协同作用极大地加快了环加成的限速步骤,其性能优于氯化锌和离子液体的单独催化组分。与物理浸渍体系(离子液体和锌配位的COF的混合物)相比,IL-Zn-COF在环加成反应中的催化活性提高了16.1%。重要的是,该催化剂在十个循环中保持其活性。此外,还合成了IL-M-COFs(M = Mn、Co、Ni)以进一步评估不同金属离子对一氧化碳捕获和转化性能的影响。

查看详情

通过维姆胡斯特起电机-纳米电喷雾电离质谱法对生物流体进行直接代谢谱分析。

Rapid Commun Mass SpectromPMID:41024605

原理:直接代谢分析对于理解各种疾病的机制至关重要。然而,对于许多生物样本类型,对天然生物流体进行直接代谢分析仍然困难,因为传统工作流程通常需要进行广泛的样本预处理以减轻高盐浓度带来的基质干扰。 方法:在本研究中,我们开发了一种使用维姆胡斯特起电机 - 纳米电喷雾电离(WM - 纳米电喷雾电离)系统对天然生物流体进行直接代谢分析的新方法。该装置由于其采样方法(将生物流体直接注入孔径约为10μm的纳米电喷雾电离发射器)和维姆胡斯特起电机提供的自适应电力(防止尖端堵塞并延长持续时间)而实现了直接代谢分析。 结果:该方法能够对药物和代谢物进行定性分析,在分析磷酸盐缓冲盐水和血清时防止尖端堵塞,并且持续时间比传统直流纳米电喷雾电离延长约15倍。根据代谢谱区分了人宫颈癌细胞系(HeLa)和人乳腺癌细胞系(MCF - 7)。 结论:我们的结果表明,WM - 纳米电喷雾电离将为实时代谢监测、增进对疾病的理解和治疗监测带来重大进展。

查看详情

钌纳米颗粒与硫掺杂碳纳米片的协同耦合用于高效析氢反应。

J Colloid Interface SciPMID:40857791

硫掺杂碳(SC)作为一种有效的载体被广泛用于稳定和提高贵金属的催化性能,引起了广泛的研究兴趣。在此,我们采用一种简单的一步煅烧方法制备了包覆有SC的钌纳米颗粒(Ru@SC)。将SC用作载体不仅提高了Ru纳米颗粒的稳定性和分散性,还优化了其电子性质,最终实现了更高效的析氢反应。具体而言,Ru@SC催化剂在酸性条件下表现出优异的析氢反应(HER)性能,在10 mA cm时过电位为88.3 mV,明显优于Ru@C催化剂(131.1 mV)。此外,使用这种催化剂的阴离子交换膜水电解(AEMWE)在1.81 V时实现了1 A cm的电流密度,且具有出色的稳定性。密度泛函理论(DFT)计算表明,Ru-SC界面处强大的电子相互作用显著改变了Ru原子的局部电子环境。这种电子重构导致了最佳的d带中心位移,有效地平衡了氢中间体(H)的吸附和解吸过程,最终提高了对HER的催化性能。本研究为开发高效电催化剂提出了一种创新策略,为推动可持续能源技术发展提供了巨大潜力。

查看详情

双位点空位填充策略提高了锡基钙钛矿太阳能电池的效率和稳定性。

J Colloid Interface SciPMID:40803075

锡基钙钛矿太阳能电池(TPSCs)因其良好的光电性能和环境兼容性而备受关注。然而,在锡钙钛矿薄膜的制备过程中,不可避免地会出现缺陷,导致非辐射复合并加速薄膜降解。在此,我们引入了一种新颖的双位点空位填充策略,即将吡咯烷氢碘化物(PyI)作为添加剂引入前驱体中。在钙钛矿晶格中,来自PyI的Py和I离子分别选择性占据锡钙钛矿的A位点和X位点空位,从而使带正电和带负电的缺陷均显著减少。该策略有效减少了缺陷并抑制了非辐射复合。此外,PyI的掺入导致活性层中的价带和导带位置更深,从而改善了与相邻传输层的能级对齐。结果,性能最佳的TPSC实现了11.43%的功率转换效率(PCE),并且在氧气浓度为50 - 100 ppm的氮气中储存1100小时后仍保持其初始效率的86%。双位点空位填充策略通过有效减轻缺陷诱导的非辐射复合并提高器件效率和长期稳定性,在无铅钙钛矿光伏领域具有巨大的潜力。

查看详情

通过诱导统一的吸附和还原位点,在钨酸铁/共价有机框架异质结上增强光催化二氧化碳还原性能。

J Colloid Interface SciPMID:40850102

无机-有机S型异质结构光催化剂在促进电荷分离以实现CO还原方面已展现出卓越潜力。然而,还原反应通常发生在无机位点,导致有机材料对CO的高吸附能力未得到充分利用。为解决这种不匹配问题,我们将低导带的钨酸铁(FeWO)与二恶英连接的共价有机框架(COF)相结合,构建了S型异质结,其中COF作为还原光催化剂,FeWO作为氧化光催化剂,用于光催化CO还原。密度泛函理论(DFT)计算和原位光谱分析证实,FeWO/COF杂化物通过增强的内电场引导S型电荷转移途径。受益于COF氰基位点对CO的强吸附与其作为还原位点的作用之间的协同效应,以及独特的S型电子转移,该复合材料实现了比COF(5.5 μmol·g·h)显著更高的CO产率(55.9 μmol·g·h),具有100%的选择性,且无需牺牲剂或敏化剂。同位素示踪实验验证了CO来自CO。原位傅里叶变换红外光谱(FT-IR)结合二维相关光谱(2D-COS)揭示了CO的连续还原过程。本研究设想了一种和谐匹配的无机/有机S型异质结以促进CO光还原。

查看详情

艾滋病毒/艾滋病患者肠道原生动物和微孢子虫的分子检测

Diagn Microbiol Infect DisPMID:40848374

引言:本研究采用分子方法调查人类免疫缺陷病毒(HIV)感染患者中的机会性病原体隐孢子虫属、肠贾第虫、芽囊原虫和微孢子虫,并确定相关危险因素。 方法:该研究纳入了100名随机选择的HIV血清阳性患者,以及50名健康个体作为对照组。排除在研究期间报告接受过抗寄生虫治疗的参与者。采用常规聚合酶链反应(PCR)检测芽囊原虫和微孢子虫,而巢式PCR用于鉴定隐孢子虫属和肠贾第虫。 结果:在22%的HIV/获得性免疫缺陷综合征(AIDS)患者中发现了芽囊原虫,17%的患者中发现了微孢子虫,12%的患者中发现了隐孢子虫属,11%的患者中发现了肠贾第虫。在对照组中,8%的个体检测到芽囊原虫,6%的个体检测到微孢子虫,2%的个体检测到隐孢子虫属,而未检测到肠贾第虫。患者组和对照组之间肠贾第虫(p = 0.001)、隐孢子虫属(p = 0.009)、微孢子虫(p = 0.013)和芽囊原虫(p = 0.029)的感染率差异具有统计学意义。12%的HIV/AIDS患者存在多重寄生虫感染,而对照组未观察到多重寄生虫感染病例。 结论:发现HIV/AIDS患者感染肠贾第虫、隐孢子虫属、微孢子虫和芽囊原虫的风险增加。鉴于存在多重寄生虫感染,应使用针对所有主要肠道寄生虫的综合诊断方法对HIV/AIDS患者的粪便样本进行常规筛查。

查看详情

用于加速锂硫电池中多硫化物转化的自衍生双碳约束CoSe纳米催化剂

J Colloid Interface SciPMID:40815933

锂硫(LiS)电池具有高理论能量密度和低材料成本,但其实际应用受到导电性差、氧化还原动力学迟缓以及多硫化物穿梭效应的限制。一种克服这些挑战的有前景的策略涉及合理设计具有高导电性、强多硫化物吸附能力和丰富可及活性位点的碳负载金属催化剂,以增强反应动力学。在此,我们报道了一种源自金属有机框架的双碳约束硒化钴(CoSe)纳米催化剂,作为一种高效的硫载体。由超薄碳纳米片和原位生长的碳纳米管组成的分级三维导电网络促进了快速的电子和离子传输,同时提供了大量活性位点。均匀分散的CoSe纳米颗粒充当双功能吸附催化中心,促进多硫化物转化并有效抑制穿梭效应。结果,该阴极在0.2 A g下实现了1385.7 mAh g的高比容量,在5 A g下保持728.5 mAh g,并展现出优异的长期循环稳定性。本研究提出了一种可行的碳负载金属催化剂设计方法,为锂硫电池技术的进步提供了一条途径。

查看详情

In situ unravelling surface plasmon resonance subject-object role of BiVO@Ag in photocatalytic water splitting.

J Colloid Interface SciPMID:40812058

Surface plasmon resonance (SPR) of noble metal particles has been recognized to play a significant role in photocatalysis. We designed the BiVO@Ag system by photo-deposition to prove the special role of Ag nanoparticles (NPs) in promoting water splitting. The BiVO@Ag considerably increases light absorption by the SPR effect of Ag NPs. A strong interface effect in BiVO@Ag-5 is effectively demonstrated through in situ vibration frequency variation of VO bonds from 826.1 cm to 820.9 cm. Loaded Ag NPs in BiVO improve slightly the hot electron lifetime (1.80 fs) compared with BiVO (1.53 fs). Ag NPs significantly raise the conduction band potential of BiVO@Ag system and evidently enhance the electrochemical specific surface area. The BiVO@Ag also exhibits significant thermal effects when illuminated with a light source (>520 nm). However, BiVO@Ag does not exhibit photocatalytic hydrogen evolution ability as using above light source, indicating that the pyroelectric current does not directly promote the photocatalytic hydrogen evolution performance of BiVO@Ag. Using a light source (<520 nm) to excite and filter out the photothermal effect of BiVO@Ag-5, an obvious reduction of hydrogen evolution (from 72.1 μmol to 18.3 μmol) can happen. The excited SPR effect with a light source (>520 nm, filter out the intrinsic absorption of BiVO matrix) proves that the SPR effect can only accelerate the hydrogen evolution rate of the system. The increase in temperature cannot significantly improve the photocatalytic hydrogen evolution rate of BiVO@Ag-5. Ab initio molecular dynamics calculations based on solvation models suggest that the surface of BiVO mainly provides the role of water decomposition, while Ag NPs mainly provide the role of photocatalytic hydrogen evolution. These findings provide a unique perspective to understand the photocatalytic water splitting behaviors, which are of general significance in various energy conversion reactions.

查看详情

Osteogenic and antibacterial enhancement by alloying design and microstructural modification of additively manufactured biodegradable metals.

BiomaterialsPMID:40505391

Additively Manufactured metallic implants face a critical challenge in simultaneously promoting osteogenesis and preventing infection, two competing requirements in complex orthopedic applications such as implant-associated infections. This study presents a novel strategy combining Cu alloying and heat treatment for biodegradable zinc-based implants fabricated by laser powder bed fusion (L-PBF), in order to address infected bone repair. After alloying, the as-built Zn-2Cu implants showed limited enhancement compared to pure Zn due to the microstructure dominated by solid solution. Subsequent heat treatment at 350 °C for 3 h induced CuZn precipitation and accelerated galvanic corrosion, remarkably improving strength and biodegradation. The resulting HT/Zn-2Cu alloy achieved a high yield strength of 203 MPa through synergistic strengthening mechanisms. More significantly, the co-released Zn and Cu at favorable concentrations demonstrated dual functionalities according to comprehensive in vitro and in vivo tests. It enhanced osteogenic activity via stimulated osteoblast proliferation, differentiation, and upregulation of osteogenesis-related genes, and introduced potent antibacterial effects through biofilm disruption and bacterial growth inhibition, revealed by transcriptomic analysis. Such findings establish a new paradigm for designing biodegradable implants that concurrently address bone regeneration and infection prevention in clinical applications.

查看详情

Remarkably improved electrochemical and safety performances of lithium-sulfur batteries via BaSO@Ketjen black double-layer-modified separators.

J Colloid Interface SciPMID:40795593

Ketjen black (KB) could be an ideal building block of the interlayer for modification of separators to greatly reduce the shuttling effect in lithium‑sulfur (Li-S) batteries, but it remains a formidable challenge to conformally and robustly coat them on the polyolefin separators. For the first time, a BaSO@KB double-layer-modified polyethylene (PE) separator has been fabricated by uniformly depositing KB conductive carbon onto the PE separator via an intermediate layer of BaSO nanoparticles. The BaSO layer remarkably improves the mechanical properties of PE separator to effectively inhibit lithium dendrite formation and prevent separator puncture, and meanwhile effectively enhances the thermal stabilities of separator to reduce the risk of thermal runaway, thus greatly boosting the battery safety. The KB carbon layer, owing to KB's ultra-high specific surface area and branched nanochain structure, significantly enhances the binding with polysulfides and accelerates the charge transfer. The BaSO@KB modified separator greatly improves the capacity and cyclability of Li-S batteries. When the sulfur loading of cathode is 3.0 mg cm, the initial discharge specific capacity of the cell with the modified separator reached 907 mAh g at a current density of 0.5C. After 200 charge-discharge cycles, the remaining specific capacity was 772 mAh g, resulting in a capacity retention rate of 85.1 %. This work not only develops a novel high-performance carbon/ceramic double-layer-modified separator for practical Li-S battery applications, but offers scientific insights into the great effect of multifunctional separators on the performance enhancement of Li-S batteries.

查看详情

Microenvironment-activatable nanoagent for real-time NIR-II monitoring and targeted therapy of arterial restenosis.

BiomaterialsPMID:40499225

Arterial restenosis is a critical risk factor for life-threatening cardiovascular diseases. Precise intervention and real-time monitoring are extremely important but remain major clinical challenges. Here, we present an advanced theranostic nanoagent that integrates hypoxia-responsive second near-infrared (NIR-II) fluorescence imaging with hypoxia-activatable anti-proliferative therapy for real-time diagnostics and precision treatment. This nanoplatform is constructed by co-encapsulating a novel N-oxide-based molecular probe and a hypoxia-activatable prodrug tirapazamine (TPZ) into osteopontin (OPN)-targeted liposomes. Under hypoxic conditions, the N-oxide probe undergoes conversion to its amine derivative, altering the intramolecular charge transfer properties and triggering turn-on NIR-II fluorescence signal. This property enables high-sensitivity, real-time monitoring of restenosis lesions in vivo. The nanoplatform exhibits dual hypoxia-responsive functionality: TPZ is selectively activated in hypoxic vascular lesions to inhibit vascular smooth muscle cell proliferation, and sustained OPN-mediated targeting promotes vascular repair. In guidewire-induced restenosis models, this system achieves simultaneous real-time monitoring of lesion progression via NIR-II imaging and significantly reduce restenosis while enhancing re-endothelialization. This study offers a promising strategy for developing high-performance theranostic nanoplatforms, enabling precise detection and improved treatment of restenosis-related diseases.

查看详情

Evaluation of the semi-quantitative BIOSynex® CryptoPS test in serum and cerebrospinal fluid samples of patients with cryptococcosis diagnosed through the IMMY CrAg® lateral flow assay: a translational study.

Diagn Microbiol Infect DisPMID:40939482

The advent of lateral flow assays (LFAs) has significantly improved the diagnosis of cryptococcosis. While the widely used IMMY CrAg® LFA is qualitative, antigen titration requires multiple test strips, increasing cost and complexity. The BIOSynex® CryptoPS is a semi-quantitative LFA that categorizes antigen levels into two ranges, low (≤25 ng/ml in cerebrospinal fluid [CSF] or ≤50 ng/ml in serum) and high (≤2,500 ng/ml in both sample types). We evaluated the performance and prognostic relevance of this assay in 22 serum and 14 CSF samples from 23 patients with cryptococcosis. Seventeen patients had culture confirmed cryptococcosis, while six were diagnosed by isolated antigenemia using the IMMY CrAg® LFA. Three samples tested negative by BIOSynex® CryptoPS despite being positive by IMMY CrAg® LFA. Among culture positive patients, all showed high antigen levels in the BIOSynex® CryptoPS. Higher antigen levels were significantly associated with lower CD4 counts in people living with HIV/AIDS (P = 0.026) and more frequent cryptococcal meningitis (P = 0.040), though not fungemia (P = 0.144). Two deaths occurred in patients with high antigen levels. The BIOSynex® CryptoPS LFA demonstrated good agreement with IMMY CrAg® LFA and provided prognostic insights, highlighting its potential role in clinical risk stratification and early management of cryptococcosis.

查看详情

Biomimetic silk fibroin meshes for regenerative soft tissue repair: Multiscale evaluation of a spatiotemporally active scaffold.

Biomater AdvPMID:40763685

BACKGROUND: To address traditional/commercial surgical meshes linked complications like fibrosis, seroma, and bacterial infections, this study highlights the benefits of using lightweight, large-pore, all natural material meshes for abdominal wall healing, soft tissue repair and regeneration. METHOD: This study presents a first-of-its-kind approach combining hand-knitted silk fibroin (SF) meshes with spin-assisted dip-coated biopolymer-phytochemical composites for soft tissue repair. The multifunctional mesh fabricated via a sustainable crochet method- weft hand-knitted silk fibroin (SF) meshes was surface-functionalized with spin-assisted dip biopolymer-phytochemical coatings. 5 % natural extracts (LE and BE) replace antibiotics, providing antimicrobial, antioxidant, and anti-inflammatory effects without toxicity. Tailored 12 % PHBV, PLA, and PCL coatings enable controlled drug release and extended degradation aligned with tissue repair. These modified meshes were analyzed in four phases i.e. material characterization, in silico assessments, in vitro testing, and in vivo analysis. RESULTS: Among the variants, PHBV modified meshes as an efficient drug delivery system with reduced pore size and increased fiber diameter (623.9 ± 66.7 μm and 12.1 ± 2.9 μm respectively). Specifically PHBV-LE emerged as the most effective composite with release kinetics of 70.4 % showing intermediate release of LE mediating the potent antimicrobial character. The PHBV-LE variant was a superior candidate with pore size promoting fibroblast proliferation (121.5 %), effective cell attachment, wound closure (88.27 %), and highly significant gene upregulation of key wound-healing markers (MMP3, FGF-1, TGFβ-1). In vivo analysis in rat models (Dawley) showed accelerated tissue integration and collagen deposition, indicating effective tissue repair and regeneration by PHBV-LE. CONCLUSION: These meshes exhibited excellent material, antibacterial, and wound-healing properties, with lightweight structure, optimal pore size, and efficient drug delivery. Among all biomimetic SF composites, PHBV-LE emulates superior native extracellular matrix features, serving as multifunctional platforms for soft tissue repair and in vitro therapeutic evaluation.

查看详情

Mo-doped and vacancy-rich NiP@NC anode: A dual-strategy approach to high-capacity and long cycle life sodium-ion batteries.

J Colloid Interface SciPMID:40834810

The development of high-performance anode materials for sodium-ion batteries (SIBs) remains critical to overcome the limitations of lithium-ion technologies. In this work, Mo-doped NiP encapsulated in nitrogen-doped carbon (Mo-NiP@NC) SIB anodes with nanosheet-stacked porous architectures through a solvothermal and chemical vapor deposition (CVD) approach were synthesized. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed lattice expansion due to Mo substitution. Electrochemical evaluations revealed that Mo doping significantly enhanced the initial Coulombic efficiency (ICE) from 51.6 % (pristine NiP) to 70.2 % and achieved a reversible specific capacity of 456 mAh g at 2.0 A g after 2000 cycles. Density functional theory (DFT) calculations demonstrated that Mo doping induced charge redistribution, lowered Na adsorption energy. Furthermore, vacancy defects produced by Mo-doping facilitate rapid ion transport and pseudocapacitive-dominated Na storage behavior minimized volume changes, ensuring long-term stability. Simultaneously, the optimized Mo-NiP@NC-2||NaV(PO)/C full-cell delivered 143 mAh g after 200 cycles at 0.1 A g, highlighting its practical application. This work elucidates the synergistic effects of heteroatom doping and vacancy in enhancing SIB anode performance, providing a strategy for designing high-ICE and durable energy storage materials.

查看详情

A medium-bandgap acceptor incorporating a novel electron-rich building block enables efficient organic photovoltaics.

J Colloid Interface SciPMID:40840342

Organic photovoltaics (OPVs) have emerged as a highly promising renewable energy technology due to their solution-processability, mechanical flexibility, and potential for low-cost manufacturing. Despite remarkable progress, further improving the power conversion efficiencies (PCEs) remains a critical challenge for their commercial applications. The incorporation of medium-bandgap non-fullerene acceptors (NFAs) as third components in ternary OPV devices has proven particularly effective in enhancing device performance. In this work, we designed a moderately electron-rich building block, 3-octylbenzo[b]thiophene (3-OBT), and utilized it to develop a medium-bandgap NFA (2Z,2'Z)-4,10-bis(4-hexylphenyl)-6,12-di(5-[2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile]-4-octylthiophen-2-yl)indaceno[1,2-b:5,6-b']dithiophene (X1). Binary OPV devices based on X1 exhibited a high open-circuit voltage of 1.03 V. Furthermore, incorporating X1 as a third component in ternary blends increased the PCE from 18.5 % to 19.7 %, highlighting its effectiveness as a high-performance third compound in ternary OPV systems. The successful development of the moderately electron-rich building block 3-OBT provides a valuable molecular design strategy for constructing future medium-bandgap NFAs. Moreover, the successful establishment of the synthetic route for X1 provides practical guidance for the development of other medium-bandgap NFAs.

查看详情

Silane-networked UiO-66-NH₂ enabled high-performance composite proton exchange membrane in water electrolysis.

J Colloid Interface SciPMID:40845456

Metal-organic frameworks (MOFs) have been widely used as high-performance proton-conducting materials of proton exchange membranes (PEMs) for efficient proton exchange membrane water electrolysis (PEMWE) due to their precisely tunable structures and versatile chemical functionalization. However, the poor distribution of MOFs within polymer matrices and their limited proton transport pathways remain substantial challenges. In this work, a silane-networking strategy is proposed to construct silane-networked UiO-66-NH₂ (Si-UiO-66-NH₂), which serves not only as a spatial barrier through Si-O-Si crosslinking to inhibit self-aggregation but also as a proton-conductive mediator via superficial polar groups that enhance proton transport. The resulting silane-networked MOFs exhibit enhanced interfacial compatibility with the Nafion matrix, thereby promoting uniform dispersion of MOF particles throughout the polymer network. More impressively, the abundant polar functional groups of silane-networked MOFs reorganize the hydrophilic/hydrophobic microphase-separated structure of the membrane, facilitating the formation of continuous, low-energy-barrier proton transport channels. Benefitting from these structural enhancements, the composite membranes exhibit excellent performance, including a low swelling ratio of 15.7 % at 80 °C and high proton conductivity (236.4 mS·cm). When applied in a water electrolyzer, the optimized Si-UiO-66-NH₂@Nafion membrane results in a significantly reduced cell voltage of 1.887 V at a current density of 3.0 A·cm at 80 °C, representing a 15.3 % decrease compared to the system using recast Nafion. This work introduces an effective ionomer/filler interfacial modulation strategy to improve the water electrolysis performance of PEMs.

查看详情

Escaping from Flatland: the role of proteins SP-B and SP-C in the formation of 3D structures in interfacial pulmonary surfactant films.

J Colloid Interface SciPMID:40848588

Deciphering the molecular structure of pulmonary surfactant (PS) at the respiratory air-liquid interface has remained a major challenge since its discovery. This is particularly critical at minimal lung volume and surface area at the end of exhalation, when PS rapidly reorganizes into a 3D membrane network without detaching from the interfacial film, ensuring readiness and stability for subsequent respiratory cycles. Using neutron reflectometry and epifluorescence microscopy in specially designed surface balances, we have investigated the structure of model PS membranes and films at different compression stages, focusing on the key roles of the hydrophobic surfactant proteins SP-B and SP-C in the organization of the system at the interface. The structure of the studied model surfactant films (both analysed orthogonal to the interfacial plane and laterally) strongly depended on composition. We clarified the distinct roles of SP-B and SP-C, revealing that only SP-B, the only protein in surfactant that is indispensable for life, nucleates 3D membrane reservoirs beneath the interface. These findings provide mechanistic insights into how PS maintains interfacial stability during respiration, with potential implications for understanding surfactant dysfunction in respiratory diseases and for designing biomimetic surfactant replacements.

查看详情

MoTiCT loaded core-shell structural MIL-88 derived iron-based cathode with in-situ Zn adulteration for high-performance aqueous zinc-ion batteries.

J Colloid Interface SciPMID:40845454

New-type and high-quality cathodes are of immense importance for the development of aqueous zinc-ion batteries (AZIBs). Herein, a core-shell structural iron-based metal organic framework (MIL-88) derived cathode (ZnFeO/FeO/C@NC/MoTiCT) with admirable specific capacity, rate performance, and cycling stability has been firstly designed and prepared. The in-situ adulterated Zn and loaded MoTiCT MXene could effectively modulate the electron distribution, facilitating the electron transfer from Fe and Zn to O atoms, which dramatically decrease the adsorption Gibbs energy for charge carriers and improve the electrical conductivity, leading to fast electrochemical kinetics. Moreover, the structural and chemical stability of the composites could be greatly improved by integrating MIL-88 derived doped carbon, polydopamine derived N-doped carbon coating, and MXene substrate. In addition, the unique core-shell and two dimensional/three dimensional hierarchical structure could provide plentiful active sites and optimize the charge storage kinetics. The synthesized electrode exhibits more excellent specific capacity of 467.9 mAh·g than that of FeO/C (143.5 mAh·g), FeO/C@NC (166.4 mAh·g), and ZnFeO/FeO/C@NC (225.6 mAh·g), as well as eminent rate performance and cycling stability. Additionally, the improved electrochemical performance and charge storage mechanisms of the cathode are revealed by characterizations, theoretical calculations, and simulations. The high-quality cathode and its designed strategy proposed in this study would promote the development and commercialization of AZIBs.

查看详情

Delicate preparation of in-situ biochar zirconium dioxide using the one-step method of repairing tailings with Pennisetum Hydridum: electrode study of symmetrical (snap-on) supercapacitor.

J Colloid Interface SciPMID:40840341

Utilizing plant-derived electrode materials with natural multi-channel structure for supercapacitors is an effective approach for developing sustainable energy and innovatively utilizing agricultural waste. In this study, based on the green synthesis strategy of recycling waste resources, Pennisetum Hydridum loaded zirconium dioxide composite electrode materials were prepared by low-temperature annealing under argon protection using the natively grown Pennisetum Hydridum in rare earth tailings as precursors. The process accomplished the recovery of carbon resources while realizing the ecological restoration of tailings. It was found that the 800 °C annealing condition not only optimized the crystallinity of zirconium dioxide, but also its mild heat treatment parameters significantly reduced the carbon footprint of the process. At a current density of 1 A/g, this material exhibited an excellent specific capacitance of 152 F/g, which was 2.85 times higher than that of graphene loaded zirconium dioxide. After 5000 cycles, the capacity retention rate reached 88 %, demonstrating its long-term cycling stability. This enabled effective extension of equipment lifespan and reduced resource consumption caused by electrode material replacement. The symmetric energy storage device constructed based on this material had a cycle capacity retention rate as high as 91.3 % and maintained a coulombic efficiency of 100 %, providing a theoretical basis for the technical paradigm of coordinated development of mine area ecological restoration and low-carbon energy storage. By integrating the elements of biomass carbon sequestration, waste recycling and low-temperature clean preparation, this study demonstrated a new way of thinking for the design of carbon neutral target functional materials.

查看详情

Differential phenolic metabolite and ROS responses in lettuce following infiltration with Salmonella and Escherichia coli O157:H7 accompanied bacterial log reductions.

Food MicrobiolPMID:40889867

While lettuce immune responses to enteropathogens have been studied at the molecular and physiological levels, plant secondary metabolite responses have received little attention. We evaluated romaine lettuce phenolic metabolite responses to Escherichia coli O157:H7 and Salmonella enterica Enteritidis infiltrated into the leaf apoplast. Evaluating spectrophotometric profiles of leaf extracts, we detected shifts in overall phenolics and developed a semi-quantitative method to measure representative phenolics absorbing maximally at 255, 273, 280 and 329 nm, based on known standards for quercetin, gallic acid, catechin and chlorogenic acid, respectively. We also measured reactive oxygen species (ROS) accumulation and bacterial counts following enteropathogen infiltration in pre- and post-harvest leaves. Live and heat-killed Salmonella elicited phenolics 4 h post-inoculation (hpi) (p < 0.05) which declined or returned to control levels 24 hpi, while exhibiting a lag time in ROS production. Phenolics in leaves inoculated with live or heat-killed E. coli O157:H7 remained mostly unchanged relative to controls, while ROS was detected at both timepoints. Salmonella populations declined by 2 log at 4 hpi and E. coli O157:H7 by 1.2 log. Post-harvest leaves had a lower phenolic content than pre-harvest leaves and exhibited lower log reductions (p < 0.05). The spectrophotometric method proved to be a useful and efficient tool to elucidate lettuce phenolic shifts in response to enteropathogens, indicating pathogen-specific responses influenced by lettuce harvest state. This research demonstrates that the complex plant responses to enteropathogens involve plant secondary metabolite shifts that intersect with basal plant immunity, suggesting direct and/or indirect links to enterobacterial population decline in the apoplast.

查看详情

Cu/CuO@polyvinyl alcohol/carbon nanotube conductive hydrogel for chloride ion removal in capacitive deionization.

J Colloid Interface SciPMID:40812055

CuO, as a cost-effective chloride ion (Cl) storage electrode material, has shown great potential in Cl removal applications. However, in the electrochemical process, CuO as the anode is easily oxidized and dissolved by free copper ions (Cu), leading to the loss of copper components and causing electrode performance degradation. In this work, we introduced a three-dimensional (3D) self-supporting polyvinyl alcohol/carbon nanotube (PVA/CNTs) conductive hydrogel as the carrier of CuO for capacitive deionization (CDI). Among them, PVA acts as an antioxidant to inhibit the conversion of CuO to free Cu, CNTs act as the growth carrier of copper particles to make them more evenly distributed in the electrode materials, and the 3D hydrogel structure can accommodate a large amount of water, making CuO fully contact with chloride ions in water and store them. At 1.4 V, the Cu/CuO@PVA/CNTs conductive hydrogels (Cu@CHs) demonstrate 49.58 ± 3.27 mg g Cl storage capacity and significantly superior areal Cl storage capacity on the 13.66 ± 0.68 mg-Cl cm, and there was no significant performance degradation in 100 cycles. This study, using PVA as the core component, proposes a simple strategy for constructing high areal performance 3D materials and provides optimization ideas for solving the oxidation dissolution problem of faradaic materials in the CDI process.

查看详情

Preparation of baicalin nano prodrug and its effect on inhibiting metastasis of triple-negative breast cancer.

Biomater AdvPMID:40850054

BACKGROUND: Triple-negative breast cancer (TNBC) faces great challenges in clinical treatment, owing to the lack of specific therapeutic targets and easy metastasis. The natural component baicalin can effectively inhibit the growth and metastasis of TNBC; however, it has some limitations, such as poor targeting and side effects. Nano targeted delivery systems can improve drug efficacy by enhancing drug accumulation and controlling drug release. OBJECTIVE: Trop-2 transmembrane glycoprotein expression is high in TNBC cells, suggesting that it can serve as a specific active targeting molecular-modified nano drug delivery system for TNBC to overcome non-specific distribution. Based on the characteristics of high-concentration glutathione in the tumor microenvironment, redox-sensitive nano-prodrugs (Trop2-BA-ss-PPEP) have been designed to achieve intelligent slow control and release of drugs. METHODS: The chemical structure of the Trop2-BA-ss-PPEP, and its stability, reductive response to drug release behavior, and targeting ability in vitro were characterized. Cell experiments and a transplanted tumor model verified the anti-tumor effect and biosafety. RESULTS: Trop2-BA-ss-PPEP was stable in a physiological environment and rapidly released the drug under reducing conditions. The experiments showed that Trop2-BA-ss-PPEP significantly promoted cellular uptake, and drug accumulation and maintenance time at the tumor site were increased. It enhanced the inhibitory effect on metastasis in vivo and in vitro, and no obvious toxicity or side effects were observed. CONCLUSION: Trop2-BA-ss-PPEP was successfully constructed. The targeting ability, microenvironment responsiveness, and anti-tumor metastatic effects of Trop2-BA-ss-PPEP provide a new strategy for TNBC therapy, which has good application and transformation potential.

查看详情

Vibrational sum frequency generation spectroscopy reveals the inertness of chromium oxide (001) surfaces.

J Colloid Interface SciPMID:40784155

Nanoengineered metal oxides such as Cr(III)-oxide (chromia) films have diverse potential applications in corrosion inhibition, remediation, energy generation, catalysis, data storage, and biological and environmental systems. Concerns about material degradation or oxidation to toxic chromate necessitate an understanding of chromia/aqueous interfaces, beginning with their hydroxylation and hydration behavior. Vibrational sum-frequency generation spectroscopy (vSFG) provides specific molecular-level information about water at the oxide/aqueous junction with high surface selectivity. To overcome the strong absorber problem typical of certain metal oxides in the UV-visible range during nonlinear optical studies, we employed molecular beam epitaxy to deposit transparent, epitaxial nanofilms of CrO with (001) crystalline orientation on sapphire (AlO (001)) substrates, as confirmed by atomic force microscopy and X-ray diffraction. vSFG spectra of the air and water interfaces of the CrO (001) films reveal hydroxyl features corresponding to both dissociated and molecular water on the surface. In contrast to the dangling hydroxyls found on the bare AlO (001) substrate, the hydroxyl groups on the deposited CrO (001) nanofilm do not readily undergo isotopic H/D exchange when exposed to varying forms of DO under ambient conditions. When considering the chemistries of the corresponding trivalent cations in aqueous solution, the finding is at variance with their similar acidities and proton exchange dynamics but consistent with markedly slower inner-sphere water ligand exchange of hexaquo Cr. This finding challenges the idea that proton and water exchange at the water/Cr₂O₃(001) interface are solely correlated, driven by the strength of metal-bridging oxygen bonds and surface hydroxyl distribution, without direct causation.

查看详情

Integrating proton co-storage in iron-based anodes for high-performance nickel-iron batteries.

J Colloid Interface SciPMID:40840344

The growing demand for sustainable energy solutions has intensified the need for efficient, cost-effective, and scalable energy storage technologies. Among candidate systems, nickel‑iron (Ni-Fe) batteries stand out due to their low cost, abundant materials, and inherent safety, offer significant potential for large-scale applications. However, their practical application is hindered by limited energy density and inefficient charge-storage mechanisms. This study presents a novel approach to address these challenges by integrating a proton co-storage mechanism into Ni-Fe batteries. The batteries are constructed using cobalt boride (Co-B) alloy cold-pressed onto Fe foam as anodes (Co-B/Fe) and in-situ grown hydroxyl hydroxide (NiOOH) on Ni foam as cathodes (NiOOH/Ni). The integration of proton co-storage enables additional redox reactions through reversible proton absorption and oxidation, leading to a record-high improvements in energy storage. The resulting battery delivers an exceptional areal capacity of ∼7.59 mAh cm and an energy density of ∼21.26 Wh cm, while maintaining ∼91.1 % of its initial capacity after 3000 cycles, demonstrating acceptable cycling stability. This work paves the way for next-generation batteries, offering a new solution for cost-effective and environmentally friendly battery technologies.

查看详情

Single-atom Zn sites decorated with ZnO clusters by in-situ carbon reduction and limited evaporation for boosting oxygen reduction.

J Colloid Interface SciPMID:40840337

The regulation of electron distribution of single-atom catalysts (SACs) by metal oxide groups is an effective strategy for boosting their intrinsic activity of oxygen reduction reaction (ORR). However, it remains a challenge to precisely control synthesis and achieve high activity of the catalyst. Herein, single-atomic Zn sites decorated with ZnO clusters on porous hollow carbon spheres (Zn/ZnO@NC) was constructed by in-situ carbon reduction and limited evaporation strategy. We reported the detailed evolution process of the template in-situ volatilization from ZnO spheres to the coexistence of Zn SAs and ZnO clusters. The influence of ZnO cluster on the reaction velocity at the ZnN sites was investigated by means of density functional theory (DFT) calculation. ZnO clusters changed the charge distribution and decreased the reaction energy barrier. Such catalyst has a half-wave potential (E) of up to 0.90 V for ORR. As the air electrode in Zn-air batteries (ZABs), Zn/ZnO@NC shows an open-circuit voltage (OCV) of the assembled Zn-air battery is 1.61 V. This work not only provides a new idea for designing highly accessible catalysts for practical applications, but also provides a guidance for studying structure-property correlations of Zn electrocatalysis.

查看详情

Activation of bone tumor-eating macrophages via assembling and co-delivering 3D printed scaffold.

BiomaterialsPMID:40554220

The current post-surgery treatment of bone tumors with 3D-printed implants is facing the dilemma of difficulty in reducing the recurrence rate, which is closely related to the inability of the implants to reverse M2 polarization and the loss of tumor phagocytosis of macrophages caused by residual tumor cells. In this study, a multifunctional therapeutic implant activating local tumor-eating macrophages and promote bone regeneration in stages was developed by assembling a co-delivery system that enriched CSF-1R inhibitors within the internal porous structure and immobilizes anti-SIRPɑ on the surface based on boron-nitrogen coordination bonds onto an aldehyde-rich 3D printed calcium phosphate scaffold using dynamic covalent bonds. The phenylboric acid-modified mesoporous silica nanoparticle served as an efficient drug carrier for the enrichment of CSF-1R inhibitor and stable binding of antibodies while preserving their bioactivity. The co-delivery system was assembled onto the calcium phosphate scaffold through loading via the HBC network, enabling sustained release in the targeted treatment area. This efficiently blocked the MCSF/CSF-1R and CD47/SIPRɑ signaling interactions between tumor cells and macrophages, thereby inhibiting M2 polarization of macrophages while preserving their phagocytic activity and inhibiting tumor recurrence. Afterward, gradual disintegration of the assembled structure exposed the calcium phosphate and silicon-based core, which promoted bone tissue repair. In summary, the stably assembled therapeutic scaffold with a co-delivery system targeting the regulation of tumor-eating macrophages in situ provides a new strategy for the suppression of tumor immune escape and recurrence following surgery.

查看详情

Isolated lumbar vertebral infection caused by Coxiella burnetii: A case report and literature review.

Diagn Microbiol Infect DisPMID:40921129

This study describes the clinical characteristics and treatment of vertebral infection caused by Coxiella burnetii through a case report and literature review. We present a 60-year-old male with isolated lumbar vertebral infection. A comprehensive literature review identified 17 cases, with 82.4 % of patients over 50 years old. Common symptoms included lumbar pain and fever, while 52.9 % developed adjacent vertebral infections through abdominal aortic aneurysms. Only 17.6 % presented as isolated vertebral infections. Radiological evidence of vertebral destruction was observed in all cases, with no cardiac valve involvement. Treatment involved doxycycline, hydroxychloroquine, fluoroquinolones, rifampicin, and surgical intervention, resulting in favorable outcomes. Isolated vertebral infections caused by Coxiella burnetii are extremely rare and pose significant diagnostic challenges. Early surgical intervention, effective diagnostic methods, and standardized anti-infective therapy are crucial for management. This case highlights the importance of timely diagnosis and multidisciplinary treatment for this rare condition.

查看详情

A biodegradable self-cascading copper-based nanozyme for augmented cancer catalytic therapy and cuproptosis.

J Colloid Interface SciPMID:40829233

Nanozyme-mediated catalytic therapy is a promising and potent approach for tumor treatment; however, its therapeutic efficiency is limited by insufficient HO and excess glutathione (GSH) within the complex tumor microenvironment. Herein, we propose a self-cascading nanozyme strategy that self-supplies HO, consumes GSH, and induces cuproptosis to address these challenges. This design features a triphenylphosphine-functionalized copper-doped mesoporous silica nanoplatform (denoted as DCM) that exhibits multi-enzymatic activity, degradability, and mitochondrial targeting capacity. In this system, DCM can initiate a cascade catalytic reaction for the self-supply of HO by leveraging its cascaded oxidase- and superoxide dismutase-mimicking properties. DCM induces long-lasting catalytic therapy by continuously generating hydroxyl radicals by catalyzing the generated HO via its peroxidase-mimicking capacity. In addition, excessive endogenous GSH can be consumed by Cu(II) in DCM, further amplifying oxidative stress in tumor cells. Moreover, DCM can degrade and release Cu ions under an acidic tumor microenvironment, reducing its potential long-term biotoxicity and initiating cuproptosis through the accumulation of released Cu ions in the mitochondria. GSH depletion further promotes Cu(I) overload in mitochondria, enhancing cuproptosis. This study introduces a novel paradigm for synergistic cuproptosis and nanocatalytic therapy against tumors through the rational design of degradable cascade catalytic nanozymes.

查看详情

A septennium review of wildlife forensic DNA analysis in South Africa.

Forensic Sci Int GenetPMID:40815962

The application of scientific research tools and technologies in wildlife forensic analysis is fundamental to support law enforcement in the regulation and enforcement of illegal criminal activities. Validated genetic technologies and techniques have proven to be critical in securing successful prosecutions specifically through the examination of DNA from physical exhibit material. In South Africa, DNA techniques and tools have been implemented to identify and characterise biological evidence of wildlife, in answering questions that arise during crime investigation and prosecution. Here, we describe, and review wildlife forensic cases analysed in South Africa (by South African National Biodiversity Institute (SANBI) and the Veterinary Genetic Laboratory (VGL)) over a seven-year period (August 2017 to July 2024). In total, 3 763 wildlife forensic cases were analysed. The taxonomic representation was skewed towards mammals encompassing 94.1 % of all cases due to large amount of wildlife cases involving black and white rhinoceros, African elephant, lion and antelope. These cases were predominantly from the north-eastern parts of the country including Limpopo, Mpumalanga and KwaZulu-Natal provinces which have previously been classified as a 'hotspot' for poaching. The type of analysis requested varied between the different taxonomic groups with 90 % of mammal cases submitted for DNA comparison, while bird, reptile, fish and invertebrate cases were mainly submitted for species identification (>87 %). This paper further reviews the successes and challenges encountered from a South African perspective and provides future recommendations.

查看详情
上一页下一页