Suppr超能文献

真菌对植物抗生素的抗性作为一种致病机制。

Fungal resistance to plant antibiotics as a mechanism of pathogenesis.

作者信息

Morrissey J P, Osbourn A E

机构信息

Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom.

出版信息

Microbiol Mol Biol Rev. 1999 Sep;63(3):708-24. doi: 10.1128/MMBR.63.3.708-724.1999.

Abstract

Many plants produce low-molecular-weight compounds which inhibit the growth of phytopathogenic fungi in vitro. These compounds may be preformed inhibitors that are present constitutively in healthy plants (also known as phytoanticipins), or they may be synthesized in response to pathogen attack (phytoalexins). Successful pathogens must be able to circumvent or overcome these antifungal defenses, and this review focuses on the significance of fungal resistance to plant antibiotics as a mechanism of pathogenesis. There is increasing evidence that resistance of fungal pathogens to plant antibiotics can be important for pathogenicity, at least for some fungus-plant interactions. This evidence has emerged largely from studies of fungal degradative enzymes and also from experiments in which plants with altered levels of antifungal secondary metabolites were generated. Whereas the emphasis to date has been on degradative mechanisms of resistance of phytopathogenic fungi to antifungal secondary metabolites, in the future we are likely to see a rapid expansion in our knowledge of alternative mechanisms of resistance. These may include membrane efflux systems of the kind associated with multidrug resistance and innate resistance due to insensitivity of the target site. The manipulation of plant biosynthetic pathways to give altered antibiotic profiles will also be valuable in telling us more about the significance of antifungal secondary metabolites for plant defense and clearly has great potential for enhancing disease resistance for commercial purposes.

摘要

许多植物会产生低分子量化合物,这些化合物在体外能抑制植物病原真菌的生长。这些化合物可能是健康植物中组成性存在的预先形成的抑制剂(也称为植物抗毒素),或者它们可能是在病原体攻击后合成的(植保素)。成功的病原体必须能够规避或克服这些抗真菌防御机制,而本综述重点关注真菌对植物抗生素的抗性作为一种致病机制的重要性。越来越多的证据表明,真菌病原体对植物抗生素的抗性对于致病性可能很重要,至少对于某些真菌 - 植物相互作用而言是这样。这一证据主要来自对真菌降解酶的研究,也来自对具有改变的抗真菌次生代谢物水平的植物进行的实验。尽管迄今为止的重点一直是植物病原真菌对抗真菌次生代谢物的抗性降解机制,但未来我们可能会看到我们对替代抗性机制的认识迅速扩展。这些可能包括与多药抗性相关的膜外排系统以及由于靶位点不敏感导致的固有抗性。操纵植物生物合成途径以改变抗生素谱,对于我们更多地了解抗真菌次生代谢物对植物防御的重要性也将很有价值,并且显然具有为商业目的增强抗病性的巨大潜力。

相似文献

1
Fungal resistance to plant antibiotics as a mechanism of pathogenesis.
Microbiol Mol Biol Rev. 1999 Sep;63(3):708-24. doi: 10.1128/MMBR.63.3.708-724.1999.
2
The arms race continues: battle strategies between plants and fungal pathogens.
Curr Opin Microbiol. 2005 Aug;8(4):399-404. doi: 10.1016/j.mib.2005.06.008.
3
Antimicrobial phytoprotectants and fungal pathogens: a commentary.
Fungal Genet Biol. 1999 Apr;26(3):163-8. doi: 10.1006/fgbi.1999.1133.
6
Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi.
Phytochemistry. 2005 Feb;66(4):391-411. doi: 10.1016/j.phytochem.2004.12.032.
8
Plant--fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants.
Phytochemistry. 2001 Feb;56(3):253-63. doi: 10.1016/s0031-9422(00)00450-7.
9
Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism.
Ciba Found Symp. 1990;154:140-53; discussion 153-6. doi: 10.1002/9780470514009.ch11.
10
Plant-microbe interactions: chemical diversity in plant defense.
Science. 2009 May 8;324(5928):746-8. doi: 10.1126/science.1171661.

引用本文的文献

4
Nicotine Degradation by : Insights from Diverse Environmental Stressors and Wastewater Medium.
Molecules. 2025 Jun 19;30(12):2658. doi: 10.3390/molecules30122658.
5
Synergistic effects of extracts and azithromycin: and antimicrobial investigation against MDR clinical strains.
Front Antibiot. 2025 May 29;4:1552382. doi: 10.3389/frabi.2025.1552382. eCollection 2025.
6
Immunoadjuvant Saponins Show Toxicity to Herbivores and Pathogenic Fungi.
Plants (Basel). 2025 Apr 20;14(8):1252. doi: 10.3390/plants14081252.
7
Metabolome profiling dissects the oat (Avena sativa L.) innate immune response to Pseudomonas syringae pathovars.
PLoS One. 2025 Feb 3;20(2):e0311226. doi: 10.1371/journal.pone.0311226. eCollection 2025.
8
Integrated metabolomics and proteomics analysis reveals the accumulation mechanism of bioactive components in .
Front Plant Sci. 2024 Dec 20;15:1487613. doi: 10.3389/fpls.2024.1487613. eCollection 2024.
9
Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study.
In Silico Pharmacol. 2024 Aug 24;12(2):78. doi: 10.1007/s40203-024-00253-w. eCollection 2024.
10
The Chemical Ecology of Plant Natural Products.
Prog Chem Org Nat Prod. 2024;124:57-183. doi: 10.1007/978-3-031-59567-7_2.

本文引用的文献

1
Secondary metabolites in plant defence mechanisms.
New Phytol. 1994 Aug;127(4):617-633. doi: 10.1111/j.1469-8137.1994.tb02968.x.
2
Histochemical localization of desoxyhemigossypol, a phytoalexin in Verticillium dahliae-infected cotton stems.
New Phytol. 1989 Feb;111(2):229-232. doi: 10.1111/j.1469-8137.1989.tb00687.x.
3
Tansley Review No. 86 Accumulation of phytoalexins: defence mechanism and stimulus response system.
New Phytol. 1996 Jan;132(1):1-45. doi: 10.1111/j.1469-8137.1996.tb04506.x.
4
Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.).
Plant Cell Rep. 1997 Jul;16(10):668-673. doi: 10.1007/s002990050299.
7
Biosynthesis of glucosinolates--gene discovery and beyond.
Trends Plant Sci. 2010 May;15(5):283-90. doi: 10.1016/j.tplants.2010.02.005. Epub 2010 Mar 19.
8
Phytoalexin detoxification: importance for pathogenicity and practical implications.
Annu Rev Phytopathol. 1989;27:143-64. doi: 10.1146/annurev.py.27.090189.001043.
9
Phytoalexins, stress metabolism, and disease resistance in plants.
Annu Rev Phytopathol. 1995;33:275-97. doi: 10.1146/annurev.py.33.090195.001423.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验