Suppr超能文献

囊性纤维化跨膜传导调节因子中的一个不稳定跨膜片段。

An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator.

作者信息

Tector M, Hartl F U

机构信息

Department of Cellular Biochemistry, Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, D-82152 Martinsried, Germany.

出版信息

EMBO J. 1999 Nov 15;18(22):6290-8. doi: 10.1093/emboj/18.22.6290.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel with 12 membrane-spanning sequences, undergoes inefficient maturation in the endoplasmic reticulum (ER). Potentially charged residues in transmembrane segments may contribute to this defect in biogenesis. We demonstrate that transmembrane segment 6 of CFTR, which contains three basic amino acids, is extremely unstable in the lipid bilayer upon membrane insertion in vitro and in vivo. However, two distinct mechanisms counteract this anchoring deficiency: (i) the ribosome and the ER translocon co-operate to prevent transmembrane segment 6 from passing through the membrane co- translationally; and (ii) cytosolic domains of the ion channel post-translationally maintain this segment of CFTR in a membrane-spanning topology. Although these mechanisms are essential for successful completion of CFTR biogenesis, inefficiencies in their function retard the maturation of the protein. It seems possible that some of the disease-causing mutations in CFTR may reduce the efficiency of proper membrane anchoring of the protein.

摘要

囊性纤维化跨膜传导调节因子(CFTR)是一种具有12个跨膜序列的氯离子通道,在内质网(ER)中成熟效率低下。跨膜片段中潜在的带电残基可能导致这种生物合成缺陷。我们证明,CFTR的跨膜片段6含有三个碱性氨基酸,在体外和体内膜插入时在脂质双层中极其不稳定。然而,有两种不同的机制可抵消这种锚定缺陷:(i)核糖体和ER转位因子协同作用,以防止跨膜片段6在共翻译时穿过膜;(ii)离子通道的胞质结构域在翻译后将CFTR的这一片段维持在跨膜拓扑结构中。尽管这些机制对于CFTR生物合成的成功完成至关重要,但其功能效率低下会阻碍蛋白质的成熟。CFTR中的一些致病突变似乎可能会降低蛋白质正确膜锚定的效率。

相似文献

1
An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator.
EMBO J. 1999 Nov 15;18(22):6290-8. doi: 10.1093/emboj/18.22.6290.
6
Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
Gastroenterology. 2005 Dec;129(6):1979-90. doi: 10.1053/j.gastro.2005.08.049.
7
Correctors promote folding of the CFTR in the endoplasmic reticulum.
Biochem J. 2008 Jul 1;413(1):29-36. doi: 10.1042/BJ20071690.
8
Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator.
Arch Biochem Biophys. 2002 May 15;401(2):215-22. doi: 10.1016/S0003-9861(02)00057-7.
10
Interhelical hydrogen bonds in the CFTR membrane domain.
Nat Struct Biol. 2001 Jul;8(7):597-601. doi: 10.1038/89631.

引用本文的文献

1
HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains.
J Cell Biol. 2024 Jul 1;223(7). doi: 10.1083/jcb.202308003. Epub 2024 May 9.
4
Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control.
Cell. 2023 Jul 20;186(15):3227-3244.e20. doi: 10.1016/j.cell.2023.05.035. Epub 2023 Jun 19.
5
An ER translocon for multi-pass membrane protein biogenesis.
Elife. 2020 Aug 21;9:e56889. doi: 10.7554/eLife.56889.
6
Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast.
Biophys J. 2019 Aug 20;117(4):668-678. doi: 10.1016/j.bpj.2019.07.013. Epub 2019 Jul 16.
7
9
Mechanisms for quality control of misfolded transmembrane proteins.
Biochim Biophys Acta. 2012 Apr;1818(4):1108-14. doi: 10.1016/j.bbamem.2011.11.007. Epub 2011 Nov 11.
10
Lipid-dependent membrane protein topogenesis.
Annu Rev Biochem. 2009;78:515-40. doi: 10.1146/annurev.biochem.77.060806.091251.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验